
From Fortran to C

by James F. Kerrigan

An OmniMedia Electronic Book

Revision 1.0
10 April 1995

© This Electronic Book Copyrighted 1995 by James F. Kerrigan
Read the section “Copyright Notice and Terms” for important copyright information

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Table of Contents ":toc:MAIN}
{ewc oshtools.dll, OlsonSoftEWJumpButton, " Copyright Notice

":copyright:MAIN} {ewc oshtools.dll, OlsonSoftEWPopupButton, " Quick
Instructions ":instruct} {ewc oshtools.dll, OlsonSoftEWPopupButton, " If You

Encounter Errors ":error}

{ewc oshtools.dll, OlsonSoftEWPopupButton, " About the Author ":authpop} {ewc
oshtools.dll, OlsonSoftEWPopupButton, " About OmniMedia ":omnimedia}

Using this electronic book is intuitive and very easy! If you are unfamiliar
with the WinHelp format, read “How to Use Help” from the “Help” menu item
above. Of course, you may learn much of what you need to know by simply
experimenting with the toolbar buttons and menu commands.

Some useful features of this electronic book include placing a Bookmark
(so you can return to the same place at a later time), Annotate (adding notes and
comments), and Full Text Search (click on the button “FTSrch” above). Refer to
“How to Use Help” for further information.

One powerful capability of this electronic book is hypertext. Hypertext is
simply text (or a button) which has been linked to some other part of the
electronic book. Clicking on hypertext will move you to the text it is linked to,
either as a pop-up, like this window, or as a topic jump. To verify if text is
hypertext, the mouse pointer will switch from an arrow to a small hand with a
pointing finger when placed on top of hypertext.

To leave this and any other pop-up window and return to where you were
before, simply click on your mouse.

Much effort has been expended into making this electronic book error-free.
But despite this effort, various types of error conditions might still occur.

If any type of error/warning message occurs while reading this electronic
book, first check to see if you have all the required files, either in the same
directory as this WinHelp file, or in the Windows’ directory path. The critical files
you need to properly read and unlock this electronic book include softlock.dll,
vbrun300.dll, oshtools.dll, slpw-win.exe, for2c.ind, ftengine.dll, ftui.dll, and
mvapi.dll (the file slpwinfo.seq should also be there, but it is less critical than the
others.) If any of these files are corrupted or missing, you can retrieve a fresh
and up-to-date copy of this electronic book, which includes these files (as well as
other valuable information) from OmniMedia’s archive or from various other
Internet and BBS archives throughout the world.

OmniMedia would like your feedback if you see any typographical errors in
this electronic book.

To leave this pop-up window and return to where you were, simply click on
your mouse.

Jim Kerrigan works as a computer consultant. He has been involved with
Fortran in both research and commercial environments for twenty-five years and
with C for over five years. He has used both languages to create programs
ranging from socioeconomic forecasting to data parallel algorithms and from a
project management package through operating system monitors to C language
extensions to aging Fortran packages. Before working for computer companies
(first Prime, then Sequent, now Hewlett-Packard), Jim received a BA in
Archaeology from Temple University and an MA in Regional Science from the
University of Pennsylvania. He is the author of another book, Migrating to
Fortran 90, published by O’Reilly & Associates.

OmniMedia is devoted to producing only the highest quality electronic books.
For more information or advice about this electronic book and other offerings
from OmniMedia, contact

OmniMedia
1312 Carlton Place
Livermore, CA 94550

(510) 294-8153; fax (510) 447-1771 (not always online)

Internet: omnimdia@netcom.com

OmniMedia’s anonymous ftp archive is located at

ftp.netcom.com /pub/Om/OmniMedia/books

Table of Contents

Click on the dark blue text to move to the indicated section:

Title Page
Copyright Notice and Terms
Book Abstract
About the Author
About This Book and Revision History
Index of Tables
Index of Figures

From Fortran to C
[Note, Chapters 5 to 7, and Appendices A to C are SoftLocked]

Dedication
Acknowledgements
Introduction
1. Why C?
2. Program Structure

Character Set
Source Code Syntax
Program and Procedures

The Main Program
Block Data and Entry
Functions and Subroutines
Statement Functions
Intrinsic Functions

3. Data Types
Data Type Declarations

Character Data Type
Complex Data Type
Double Precision Data Type
Integer Data Type
Logical Data Type
Real Data Type

Numerical Range

Storage Allocation
4. Operators

Arithmetic Operators
Character Operators
Relational Operators
Logical Operators
Bitwise Operators

5. Concordance

Assign Backspace Block
Call Character Close
Common Complex Continue
Data Dimension Do
Double Precision Else Else If
End End If Endfile
Entry Equivalence External
Format Function Go To (Assigned)
Go To (Computed) Go To (Unconditional) If (Arithmetic)
If (Logical) If ... Then Implicit
Inquire Integer Intrinsic
Logical Open Parameter
Pause Print Program
Read Real Return
Rewind Save Stop
Subroutine Write

6. Arrays
Array Data Storage
Array Index Range
Pointers and Arrays
Dynamic Array Dimensions
Character Arrays
Structures

7. Interprogram Communication
Source Code Markers
Included Files
Command Execution
Signal Handling
Program Completion Control

8. Input / Output
Internal Files
Files

Terminal Input/Output
Sequential Access Method Files
Direct Access Method Files

Formats
9. C Functions New to Fortran

Compiler Preprocessing
Enumerated Constants
Sorting and Searching
Random Numbers
Time and Date
Recursive Functions

10. Summary
Appendix A: C Compilers
Appendix B: Fortran Compilers
Appendix C: Fortran–to–C Translation Tools
Appendix D: Standard References

{ewc oshtools.dll, OlsonSoftEWButton, " Next Topic ":next()}

Index of Tables

Click on the dark blue text to move to the indicated table:

1-1 Survey of Fortran and C book titles.
2-1 Correspondence between Fortran and C intrinsic functions.
3-1 Correspondence of Fortran and C data types.
3-2 Range of values for C data types.
4-1 Fortran and C operators.
8-1 Fortran format edit descriptors.
8-2 C format conversion specifiers.
10-1 Fortran 90 selected intrinsic functions.

{ewc oshtools.dll, OlsonSoftEWButton, " Return to Table of Contents
":back()}
{ewc oshtools.dll, OlsonSoftEWPopupButton, " Important Notes on
Reading This Book ":important}

Table 1-1. Survey of Fortran and C book titles. Data from 1988-1989
Books in Print and subsequent Forthcoming Books published by R. R. Bowker,
New York, NY.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Subject Fortran C

Graphics 1 7
Language syntax 30 35
Advanced texts 50 56
Introductory texts 70 50
Personal computer related 8 12
Science and engineering 42 5
Ada related 0 1
Algol related 2 0
Assembly language related 2 0
BASIC related 1 4
Pascal related 4 5
PL/I related 2 0

Total 212 175

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Table 2-1. Correspondence between Fortran and C intrinsic
functions.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Description Fortran C

Absolute value: real abs
Arccosine: real acos
Truncation: real aint
Natural logarithm: real alog
Common logarithm: real alog10
Choosing largest value: integer/real amax0
Choosing largest value: real/real amax1
Choosing smallest value: integer/real amin0
Choosing smallest value: real/real amin1
Remaindering: real amod
Nearest whole number: real anint
Arcsine: real asin
Arctangent: real atan
Arctangent: quotient of reals atan2
Type conversion: integer to character char
Cosine: real cos
Hyperbolic cosine: real cosh
Absolute value: double dabs fabs
Arccosine: double dacos acos
Arcsine: double dasin asin
Arctangent: double datan atan
Type conversion: integer/real to double dble double
Cosine: double dcos cos
Hyperbolic cosine: double dcosh cosh
Positive difference: double ddim
Exponential: double dexp exp
Positive difference: real dim
Truncation: double dint ceil
Natural logarithm: double dlog log
Common logarithm: double dlog10 log10
Choosing largest value: double/double dmax1
Choosing smallest value: double/double dmin1
Remaindering: double dmod fmod

Nearest whole number: double dnint floor
Double precision product dprod
Transfer of sign: double dsign
Sine: double dsin sin
Hyperbolic sine: double dsinh sinh
Square root: double dsqrt
Tangent: double dtan tan
Arctangent: quotient of doubles dtan2 atan2
Hyperbolic tangent: double dtanh tanh
Exponential: real exp
Type conversion: integer to real float float
Absolute value: integer† iabs abs/labs
Type conversion: character to integer ichar
Positive difference: integer idim
Type conversion: double to integer idint int
Nearest integer: double idnint
Type conversion: real to integer ifix int
Index of substring index strstr
Transfer of sign: integer isign
Length of character entity len sizeof
Lexically greater than or equal lge strncmp
Lexically greater than lgt strncmp
Lexically less than or equal lle strncmp
Lexically less than llt strncmp
Choosing largest value: integer/integer max0
Choosing largest value: real/integer max1
Choosing smallest value: integer/integer min0
Choosing smallest value: real/integer min1
Remaindering: integer† mod %
Nearest integer: real nint
Transfer of sign: real sign
Sine: real sin
Hyperbolic sine: real sinh
Type conversion: double to real sngl float
Square root: real sqrt
Tangent: real tan
Hyperbolic tangent: real tanh

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

C counterparts to the Fortran iabs function differ in terms of their
arguments: abs takes a “short” integer argument and labs takes a “long”
integer argument (see Chapter 3). The C counterpart to the Fortran mod
function, the percent sign, is the remaindering mathematical operator rather
than an intrinsic function.

Table 3-1. Correspondence of Fortran and C data types.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Fortran Type C Type

character char
signed char
unsigned char

complex (not applicable)

double precision double
long double

integer int
long
long int
short
short int
signed
signed int
singed long
singed long int
signed short
signed short int
unsigned
unsigned int
unsigned long
unsigned long int
unsigned short
unsigned short int

logical (not applicable)

real float

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Table 3-2. Range of values for C data types.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

C Type Minimum Value Maximum Value

char (printable) ' ' = 32 '~' = 126
signed char -127 127
unsigned char 0 255

double (10 digits) 10 ** -37 10 ** 37
long double (10 digits) 10 ** -37 10 ** 37

int -32767 32767
short -32767 32767
short int -32767 32767
signed -32767 32767
signed int -32767 32767
signed short -32767 32767
signed short int -32767 32767
unsigned 0 65535
unsigned int 0 65535
unsigned short 0 65535
unsigned short int 0 65535
long -2147483647 2147483647
long int -2147483647 2147483647
signed long -2147483647 2147483647
singed long int -2147483647 2147483647
unsigned long 0 4294967295
unsigned long int 0 4294967295

float (10 digits) 10 ** -37 10 ** 37

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Table 4-1. Fortran and C operators.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Operator Type and Description Fortran C

ARITHMETIC OPERATORS
Exponentiation† ** pow()
Division / /, /=
Multiplication * *, *=
Subtraction (or negation) - -, -=, --
Addition (or identity) + +, +=, ++
Modulus mod() %, %=
If/else ?:

CHARACTER OPERATOR
Concatenation† // strcat()

RELATIONAL OPERATORS
Less than .LT. <
Less than or equal to .LE. <=
Equal to .EQ. ==
Not equal to .NE. !=
Greater than .GT. >
Greater than or equal to .GE. >=

LOGICAL OPERATORS
Logical negation .NOT.
Logical conjunction .AND. &&
Logical inclusive disjunction .OR. ||
Logical equivalence .EQV.
Logical nonequivalence .NEQV.
BITWISE OPERATORS
One’s complement ~
Bitwise left shift <<, <<=
Bitwise right shift >>, >>=
Bitwise AND .AND. &, &=
Bitwise exclusive OR ^
Bitwise OR .OR. |, |=

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

C has no operator for exponentiation: a library function, pow, is in the C
standard mathematical library to raise a number to a power.

C has no operator for string concatenation: a library function, strcat, is in
the C standard string library to perform string concatenation.

Table 8-1. Fortran format edit descriptors.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Descriptor† Repeatable Brief Description

' ' (apostrophe) no encloses string (output only)
: (colon) no terminates format control
/ (slash) no advance to next record
A yes full character string
Aw yes all or part of character string
BN no ignore blanks (input only)
BZ no treat blanks as zero (input only)
Dw.d yes double precision
Ew.d yes exponents
Ew.dEe yes exponents
Fw.d yes without exponents
Gw.d yes varied magnitude
Gw.dEe yes varied magnitude
nH no character constant (output only)
1H no single space
1H+ no no advance (overprint)
1H0 no double space
1H1 no form feed (top of form)
Iw yes integer
Iw.m yes integer with leading zeros
Lw yes logical (T or F)
kP no scale factor
S no processor controlled sign control
SP no force sign control (print + or -)
SS no suppress sign control
Tc no absolute positional editing
Tlc no backward positional editing
Trc no forward positional editing
nX no skip n spaces

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Lowercase letters in the first column are defined as:

c character position (nonzero positive integer)
d digits after decimal point (positive integer)
e digits in exponent (nonzero positive integer)
k scale factor (any integer)
m mandatory digits printed (positive integer)
n character count (nonzero positive integer)
w field width (nonzero positive integer)

Table 8-2. C format conversion specifiers.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Modifier
Conversion Flags Input Output
Specifier - + # 0 Width Precision h l L h l L

c character y n n n n y y n n n n n n
d integer y y y n y y y y y n y y n
e, E floating point y y y y y y y n y y n n y
f floating point y y y y y y y n y y n n y
g, G floating point y y y y y y y n y y n n y
i integer y y y n y y y y y n y y n
n I/O count n n n n n n n y y n y y n
o octal y n n n y y y y y n y y n
p pointer y n n n n y n n n n n n n
s string y n n n n y y n n n n n n
u unsigned integer y n n n y y y y y n y y n
x, X hexadecimal y n n y y y y y y n y y n

Column headings under the word “Flags” produce the following
formats: (-) data is left-justified in field, (+) sign always printed, () if first
character is NOT a sign then print a space, (0) print with leading zeroes,
and (#) use an alternate form of output for certain conversion specifiers in
which a decimal point is ALWAYS printed for e and f specifiers, a decimal
point is ALWAYS printed as well as trailing zeros for g specifier, and prefix
with zero or 0x for non-zero values printed with the o and x specifiers.

The “precision” of a conversion specifier affects printing as follows:
(dioux) the minimum number of digits, (ef) the number of digits after the
decimal point, (g) the number of significant digits, and (s) the maximum
number of characters. Default precision for integer numbers (i.e., dioux) is
one and default precision for floating point numbers (i.e., efg) is six.

Column headings under the input and output modifier columns refer
to short or long integers (i.e., the h and l modifiers) or long double (i.e., the
L modifier).

Note that the three floating point conversion specifiers, (i.e., efg)
convert their corresponding argument to a double on output. However, the
default conversion on input is to the float data type. To convert on input to
the double data type, use the l modifier.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Table 10-1. Fortran 90 selected intrinsic functions.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Function Name Category / Definition

Numeric Functions
ceiling least integer greater than or equal to number
floor greatest integer less than or equal to number

Character Functions
achar character in position in ASCII collation
adjustl adjust string left (remove leading blanks)
adjustr adjust string right (remove trailing blanks)
iachar position of character in ASCII collation
len_trim length of string without trailing blanks
repeat repeated string concatenation
scan scan for first or last character(s) in string
trim remove trailing blanks from string
verify confirm presence of character(s) in string

Numeric Inquiry Functions
digits number of significant digits in numeric model
epsilon number almost negligible compared to one
exponent return exponent part of real number representation
fraction return fraction part of real number representation
huge largest number in numeric model
kind code for numeric representation
maxeponent maximum exponent in numeric model
minexponent minimum exponent in numeric model
modulo return modulo of number
nearest return nearest representable number to target
precision decimal precision
radix base in numeric model
range decimal exponent range
rrange return relative real number spacing
scale scale number by constant
selected_int_kind select specific integer representation
selected_real_kind select specific real representation
set_exponent set exponent part of real number representation

tiny smallest number in numeric model

Bit Inquiry Function
bit_size number of bits in numeric model

Bit Manipulation
btest bit testing
iand logical and
ibclr clear bit
ibits bit extraction
ibset set bit
ieor exclusive OR
ior inclusive OR
ishft logical shift
ishftc circular shift
mvbits copy bits from one integer to another
not logical complement

Conversion Functions
logical convert between different logical types
transfer interpret bit pattern according to other data type

Array Manipulation Functions
all .TRUE. if all array values are true
any .TRUE. if any array value is true
count number of .TRUE. elements in array
cshift circular shift of array elements
dotproduct dot product of two vectors
eoshift “end off” shift of array elements
matmul vector or 2-dimensional matrix multiplication
maxloc location of maximum value in array
maxval maximum value in array
minloc location of minimum value in array
minval minimum value in array
product product of all array elements
sum sum of all array elements
transpose transpose two-dimensional array

Array Inquiry Functions
allocated .TRUE. if array is allocated

lbound returns vector of lower bounds set for array
reshape modify shape of array
shape returns vector of elements per dimension
size total number of elements in array
ubound returns vector of upper bounds set for array

Array Construction Functions
merge merge two arrays under mask
pack pack N-dimensional array into vector
spread replicate array by adding a dimension
unpack unpack vector into N-dimensional array

System Level Intrinsics
 associated determine if pointer is associated
date_and_time retrieve date and time from host system
present test if optional argument is present
random_number return pseudo random number
random_seed initialize pseudo random number generator
system_clock obtain ticks, ticks/second, maximum ticks

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Tables, figures, and text references marked by † (click on this symbol to
“hypertext” jump to them.)
Fortran text as Courier dark blue, e.g., array(25,25).
C text as Arial light blue, e.g., printf.
Program output text as Courier black, e.g., 2.3456789E+05.
An entire topic can be copied to the Windows clipboard using “ctrl-ins”
(refer to “How to Use Help” from the “Help” menu item above). From the
clipboard it can be easily copied into a Windows-based word or text
processor. This is especially useful for copying the example Fortran and C
programs found throughout the text.

Index of Figures

Click on the dark blue text to move to the indicated figure:
[Note, the Figures in Chapters 6 and 7 are SoftLocked]

{ewc oshtools.dll, OlsonSoftEWButton, " Return to Table of Contents
":back()}
{ewc oshtools.dll, OlsonSoftEWPopupButton, " Important Notes on
Reading This Book ":important}

2-1 Fortran program demonstrating various function types.
2-2 C program demonstrating various function types.
2-3 Output of programs in Figures 2-1 and 2-2.
3-1 C program to calibrate Table 3-2 for your compiler.
4-1 Additional C arithmetic operators.
4-2 Output of additional C operators program.
4-3 Additional C operators program in Fortran.
4-4 C bitwise operators.
4-5 Results of C bitwise operator demonstration program.
6-1 Fortran array example program.
6-2 C array example program.
6-3 C array in C initialization order.
6-4 Fortran array index example program.
6-5 C array index example program.
6-6 C arrays treated as pointers.
6-7 C array memory allocation example program.
6-8 C character array example program.
6-9 C structures.
7-1 C source code file attributes.
7-2 C include file demonstration.
7-3 C include file nesting.
7-4 C program structure example program.

7-5 C program structure include file example program.
7-6 C system function.
7-7 C signal processing.
7-8 C signal processing: CTRL-C entered from keyboard.
7-9 C signal processing: CTRL-C entered and ignored.
7-10 C atexit function example program.
8-1 C read-and-write internal record example program.
8-2 C program for single character terminal I/O.
8-3 C program for string terminal I/O.
8-4 C program for integer numeric terminal I/O.
8-5 C program for floating point numeric terminal I/O.
8-6 C program for string terminal I/O.
8-7 C program for string token terminal I/O.
8-8 C isX function example program.
8-9 C program to convert character to numeric values.
8-10 C sequential file access program.
8-11 C direct access file program.
8-12 C format conversion specifier example program.
8-13 Fortran G format example.
8-14 C G format example.
8-15 Fortran line control program.
8-16 C line control program.
8-17 C emulation of Fortran format statement.
9-1 C preprocessor statements.
9-2 C enum data type example program.
9-3 C qsort (quick sort) example program.
9-4 C bsearch (binary search) example.
9-5 C random number functions.
9-6 C time functions.

9-7 C recursive program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return to Table of Contents
":back()}
{ewc oshtools.dll, OlsonSoftEWPopupButton, " Important Notes on
Reading This Book ":important}

Figure 2-1. Fortran program demonstrating various function types.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

c Fig. 2-1. Fortran program demonstrating various
function
c types.
c
 program main
 integer ffinv
 integer ffoutv
 integer frinv
 integer froutv
 integer fsinv
 integer fsinc
 integer fsoutv
 integer sfun
 external func
 external rout
 sfun (fsinv, fsinc) = fsinv + fsinc
 ffinv = 1
 ffoutv = 0
 frinv = 1
 froutv = 0
 fsinv = 1
 fsinc = 0
 fsoutv = 0
 write (6,100)
 100 format (/ 1H , 'MAIN: beginning of program')
c
c Invoke a Fortran subroutine.
 write (6,200) frinv, froutv
 200 format (/ 1H , 'MAIN: ', i1, ' 2 ', i1)
 call rout (frinv, 2, froutv)
 write (6,300) frinv, froutv
 300 format (1H , 'MAIN: ', i1, ' + 2 = ', i1)
c
c Invoke a Fortran function.
 write (6,400) ffinv, ffoutv
 400 format (/ 1H , 'MAIN: ', i1, ' 2 ', i1)
 ffoutv = func (ffinv, 2)

 write (6,500) ffinv, ffoutv
 500 format (1H , 'MAIN: ', i1, ' + 2 = ', i1)
c
c Invoke a Fortran statement function.
 write (6,600) fsinv, fsoutv
 600 format (/ 1H , 'MAIN: ', i1, ' 2 ', i1)
 fsoutv = sfun (fsinv, 2)
 write (6,700) fsinv, fsoutv
 700 format (1H , 'MAIN: ', i1, ' + 2 = ', i1)
 write (6,800)
 800 format (/ 1H , 'MAIN: end of program' /)
 stop
 end
c
 subroutine rout (frinv, frinc, froutv)
 integer frinv
 integer frinc
 integer froutv
 write (6,100)
 100 format (1H , 'ROUT: beginning of routine')
 froutv = 0
 write (6,200) frinv, frinc, froutv
 200 format (1H , 'ROOT: ', i1, ' ', i1, ' ',
i1)
 froutv = frinv + frinc
 write (6,300) frinv, frinc, froutv
 300 format (1H , 'ROOT: ', i1, ' + ', i1, ' = ',
i1)
 write (6,400)
 400 format (1H , 'ROUT: end of routine')
 return
 end
c
 function func (ffinv, ffinc)
 integer ffinv
 integer ffinc
 integer ffoutv
 write (6,100)
 100 format (1H , 'FUNC: beginning of function')
 write (6,200) ffinv, ffinc, ffoutv

 200 format (1H , 'FUNC: ', i1, ' ', i1, ' ',
i1)
 ffoutv = ffinv + ffinc
 write (6,300) ffinv, ffinc, ffoutv
 300 format (1H , 'FUNC: ', i1, ' + ', i1, ' = ',
i1)
 write (6,400)
 400 format (1H , 'FUNC: end of function')
 func = ffoutv
 return
 end

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 2-2. C program demonstrating various function types.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 2-2. C program demonstrating various function types.
*/

 #define sfun(csinv, csinc) csinv + csinc

 main (void)
{
 int cfinv = 1;
 int cfoutv = 0;
 int crinv = 1;
 int croutv = 0;
 int csinv = 1;
 int csinc ;
 int csoutv = 0;
 int func ();
 void rout ();
 printf ("\nMAIN: beginning of program\n\n");
/*
 Invoke a "Fortran subroutine-like" function. */
 printf ("MAIN: %d 2 %d\n", crinv, croutv);
 rout (crinv, 2, &croutv);
 printf ("MAIN: %d + 2 = %d\n\n", crinv, croutv);
/*
 Invoke a "Fortran function-like" function. */
 printf ("MAIN: %d 2 %d\n", cfinv, cfoutv);
 cfoutv = func (cfinv, 2);
 printf ("MAIN: %d + 2 = %d\n\n", cfinv, cfoutv);
/*
 Invoke a "Fortran statement function-like" macro. */
 printf ("MAIN: %d 2 %d\n", csinv, csoutv);
 csoutv = sfun (csinv, 2);
 printf ("MAIN: %d + 2 = %d\n\n", csinv, csoutv);
 printf ("MAIN: end of program\n");
 return;
}

 void rout (int crinv, int crinc, int *croutv)
{
 printf ("ROUT: beginning of routine\n");
 *croutv = 0;
 printf ("ROUT: %d %d %d\n", crinv,crinc,*croutv);
 *croutv = crinv + crinc;
 printf ("ROUT: %d + %d = %d\n", crinv,crinc,*croutv);
 printf ("ROUT: end of routine\n");
 return;
}

 int func (int cfinv, int cfinc)
{
 int cfoutv=0;
 printf ("FUNC: beginning of function\n");
 printf ("FUNC: %d %d %d\n", cfinv,cfinc,cfoutv);
 cfoutv = cfinv + cfinc;
 printf ("FUNC: %d + %d = %d\n", cfinv,cfinc,cfoutv);
 printf ("FUNC: end of function\n");
 return (cfoutv);
}

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 2-3. Output of programs in Figures 2-1 and 2-2.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}
{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Figure 2-1
":fig0201:MAIN} {ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to
Figure 2-2 ":fig0202:MAIN}

MAIN: beginning of program
MAIN: 1 2 0
ROUT: beginning of routine
ROUT: 1 2 0
ROUT: 1 + 2 = 3
ROUT: end of routine
MAIN: 1 + 2 = 3
MAIN: 1 2 0
FUNC: beginning of function
FUNC: 1 2 0
FUNC: 1 + 2 = 3
FUNC: end of function
MAIN: 1 + 2 = 3
MAIN: 1 2 0
MAIN: 1 + 2 = 3
MAIN: end of program

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}
{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Figure 2-1
":fig0201:MAIN} {ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to
Figure 2-2 ":fig0202:MAIN}

Figure 3-1. C program to calibrate Table 3-2 for your compiler.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}
{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Table 3-2
":tab0302:MAIN}

Note: For maximum readability, tabs are used in the C code below. If you copy
this program using “ctrl-ins”, be sure to convert the tabs to spaces before
compiling.

/* Fig. 3-1. C program to calibrate Table 3-2 for your compiler.
*/
#include <float.h>
#include <limits.h>
main (void)
{
 char space = ' ';
 char tilde = '~';
 unsigned uchar_min = 0u;
 unsigned uint_min = 0u;
 unsigned long int ulong_min = 0ul;
 printf ("Tab. 3-2. Range of values for C data types.\n\n");
 printf ("C Type Minimum Value Maximum Value\
n\n");
 printf ("char (printable) '%c' = %d\t'%c' = %d\n",\

space, space, tilde, tilde);
 printf ("signed char %d\t\t%d\n", SCHAR_MIN,
SCHAR_MAX);
 printf ("unsigned char %u\t\t%u\n\n", uchar_min,
UCHAR_MAX);
 printf ("double (%d digits) 10 ** %d\t10 ** %d\n", DBL_DIG,\
 DBL_MIN_10_EXP,
DBL_MAX_10_EXP);
 printf ("long double (%d digits) 10 ** %d\t10 ** %d\n\n",
DBL_DIG,\

DBL_MIN_10_EXP,
DBL_MAX_10_EXP);
 printf ("int %d\t\t%d\n", INT_MIN,
INT_MAX);
 printf ("short %hd\t\t%hd\n", SHRT_MIN,
SHRT_MAX);

 printf ("short int %hd\t\t%hd\n", SHRT_MIN,
SHRT_MAX);
 printf ("signed %d\t\t%d\n", INT_MIN,
INT_MAX);
 printf ("signed int %d\t\t%d\n", INT_MIN,
INT_MAX);
 printf ("signed short %d\t\t%d\n", SHRT_MIN,
SHRT_MAX);
 printf ("signed short int %d\t\t%d\n", SHRT_MIN,
SHRT_MAX);
 printf ("unsigned %u\t\t%u\n", uint_min,
UINT_MAX);
 printf ("unsigned int %u\t\t%u\n", uint_min,
UINT_MAX);
 printf ("unsigned short %u\t\t%u\n", uint_min,
UINT_MAX);
 printf ("unsigned short int %u\t\t%u\n", uint_min,
UINT_MAX);
 printf ("long %ld\t%ld\n", LONG_MIN,
LONG_MAX);
 printf ("long int %ld\t%ld\n", LONG_MIN,
LONG_MAX);
 printf ("signed long %ld\t%ld\n", LONG_MIN,
LONG_MAX);
 printf ("signed long int %ld\t%ld\n", LONG_MIN,
LONG_MAX);
 printf ("unsigned long %lu\t\t%lu\n", ulong_min,
ULONG_MAX);
 printf ("unsigned long int %lu\t\t%lu\n\n", ulong_min,
ULONG_MAX);
 printf ("float (%d digits) 10 ** %d\t10 ** %d\n", FLT_DIG,\
 FLT_MIN_10_EXP,
FLT_MAX_10_EXP);
}

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}
{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Table 3-2
":tab0302:MAIN}

Figure 4-1. Additional C arithmetic operators.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 4-1. Additional C arithmetic operators. */
 int ci, cj, ck;
 main ()
 {

 void reset ();
 reset ();

 cj = ck;
 ck /= ci;
 printf ("%d division/assign %d = %d\n", cj, ci, ck);
 reset ();

 ci = ck;
 ck *= cj;
 printf ("%d mutiply/assign %d = %d\n", ci, cj, ck);
 reset ();

 ci = ck;
 ck -= cj;
 printf ("%d subtraction/assign %d = %d\n", ci, cj, ck);
 reset ();

 ci = cj;
 ck = --cj;
 printf ("%d decremented = %d\n", ci, ck);
 reset ();

 ci = ck;
 ck += cj;
 printf ("%d addition/assign %d = %d\n", ci, cj, ck);
 reset ();

 ci = cj;
 ck = ++cj;
 printf ("%d incremented = %d\n", ci, ck);

 reset ();

 printf ("%d modulus %d = %d\n", ck, cj, ck%cj);
 reset ();

 ci = ck;
 ck %= cj;
 printf ("%d modulus/assign %d = %d\n", ci, cj, ck);
 reset ();

 ck = (ci != cj) ? 4 : 5;
 printf (" if/else operator result = %d\n", ck);
 reset ();

 return;
 }

 void reset ()
 {
 ci = 1;
 cj = 2;
 ck = 3;
 return;
 }

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 4-2. Output of additional C operators program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

3 division/assign 1 = 3
3 mutiply/assign 2 = 6
3 subtraction/assign 2 = 1
2 decremented = 1
3 addition/assign 2 = 5
2 incremented = 3
3 modulus 2 = 1
3 modulus/assign 2 = 1
 if/else operator result = 4

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 4-3. Additional C operators program in Fortran.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

c Fig. 4-3. Additional C operators program in Fortran.
 program main
 integer fi, fj, fk
 common / area / fi, fj, fk
 call reset
 fj = fk
 fk = fk / fi
 write (6,1) fj, fi, fk
 1 format (1H , i1, ' division/assign ', i1, ' = ',
i1)
 call reset
 fi = fk
 fk = fk * fj
 write (6,2) fi, fj, fk
 2 format (1H , i1, ' mutiply/assign ', i1, ' = ',
i1)
 call reset
 fi = fk
 fk = fk - fj
 write (6,3) fi, fj, fk
 3 format (1H , i1, ' subtraction/assign ', i1, ' =
', i1)
 call reset
 fi = fj
 fk = fj - 1
 write (6,4) fi, fk
 4 format (1H , i1, ' decremented = ', i1)
 call reset
 fi = fk
 fk = fk + fj

 write (6,5) fi, fj, fk
 5 format (1H , i1, ' addition/assign ', i1, ' = ',
i1)
 call reset
 fi = fj
 fk = fj + 1
 write (6,6) fi, fk
 6 format (1H , i1, ' incremented = ', i1)
 call reset
 write (6,7) fk, fj, mod(fk,fj)
 7 format (1H , i1, ' modulus ', i1, ' = ', i1)
 call reset
 fi = fk
 fk = mod(fk,fj)
 write (6,8) fi, fj, fk
 8 format (1H , i1, ' modulus/assign ', i1, ' = ',
i1)
 call reset
 if (fi .ne. fj) then
 fk = 4
 else
 fk = 5
 end if
 write (6,9) fk
 9 format (1H , ' if/else operator result = ',
i1)
 call reset
 stop
 end
 subroutine reset
 integer fi, fj, fk
 common / area / fi, fj, fk
 fi = 1
 fj = 2

 fk = 3
 return
 end

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 4-4. C bitwise operators.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 4-4. C bitwise operators. */

 #include <stdio.h>
 int ci, cj, ck;
 char *co;
 main ()
 {
 void showresult ();
 ci = 29452;

 printf ("\nOne's complement\n");
 ck = ~ci;
 cj = 0;
 co = "~ ";
 showresult();

 printf ("\nBitwise left shift\n");
 cj = 5;
 ck = ci << cj;
 co = "<<";
 showresult();

 printf ("\nBitwise right shift\n");
 cj = 7;
 ck = ci >> cj;
 co = ">>";
 showresult();

 printf ("\nBitwise AND\n");
 cj = 9913;
 ck = ci & cj;
 co = "& ";
 showresult();

 printf ("\nBitwise exclusive OR\n");
 ck = ci ^ cj;

 co = "^ ";
 showresult();

 printf ("\nBitwise OR\n");
 ck = ci | cj;
 co = "| ";
 showresult();

 printf ("\n");
 return;
 }

 void showresult ()
 {
 void showbits ();
 printf ("Decimal %16d %2s %16d = %16d\n", ci, co, cj, ck);
 printf ("Binary ");
 showbits (ci);
 printf ("%2s ", co);
 showbits (cj);
 printf ("= ");
 showbits (ck);
 printf ("\n");
 return;
 }

 void showbits (int number)
 {
 int i;
 unsigned int window = 32768;
 for (i = 1; i <= 16; i++) {
 putchar ((number & window) ? '1' : '0');
 window >>= 1;
 }
 putchar (' ');
 return;
 }

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 4-5. Results of C bitwise operator demonstration program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

One's complement
Decimal 29452 ~ 0 =
-29453
Binary 0111001100001100 ~ 0000000000000000 =
1000110011110011
Bitwise left shift
Decimal 29452 << 5 =
24960
Binary 0111001100001100 << 0000000000000101 =
0110000110000000
Bitwise right shift
Decimal 29452 >> 7 =
230
Binary 0111001100001100 >> 0000000000000111 =
0000000011100110
Bitwise AND
Decimal 29452 & 9913 =
8712
Binary 0111001100001100 & 0010011010111001 =
0010001000001000
Bitwise exclusive OR
Decimal 29452 ^ 9913 =
21941
Binary 0111001100001100 ^ 0010011010111001 =
0101010110110101
Bitwise OR
Decimal 29452 | 9913 =
30653
Binary 0111001100001100 | 0010011010111001 =
0111011110111101

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-1. Fortran array example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

c Fig. 6-1. Fortran array example program.
 program main
 integer one, two, three, four, five, six, seven
 integer n1, n2, n3, n4, n5, n6, n7, n
 integer i1, i2, i3, i4, i5, i6, i7, k
 dimension one(2), two(2,2),
 - three(2,2,2), four(2,2,2,2),
 - five(2,2,2,2,2), six(2,2,2,2,2,2),
 - seven(2,2,2,2,2,2,2)
 n = 2
 n1 = n
 n2 = n1 * n
 n3 = n2 * n
 n4 = n3 * n
 n5 = n4 * n
 n6 = n5 * n
 n7 = n6 * n
 k = 0
 do 1 i7 = 1, n, 1
 do 1 i6 = 1, n, 1
 do 1 i5 = 1, n, 1
 do 1 i4 = 1, n, 1
 do 1 i3 = 1, n, 1
 do 1 i2 = 1, n, 1
 do 1 i1 = 1, n, 1
 k = k + 1
 if (k .le. n1) one(i1) = k
 if (k .le. n2) two(i1,i2) = k
 if (k .le. n3) three(i1,i2,i3) = k
 if (k .le. n4) four(i1,i2,i3,i4) = k
 if (k .le. n5) five(i1,i2,i3,i4,i5) = k
 if (k .le. n6) six(i1,i2,i3,i4,i5,i6) = k
 seven(i1,i2,i3,i4,i5,i6,i7) = k
 1 continue
 call display (n, 1, one, n1)
 call display (n, 2, two, n2)
 call display (n, 3, three, n3)

 call display (n, 4, four, n4)
 call display (n, 5, five, n5)
 call display (n, 6, six, n6)
 call display (n, 7, seven, n7)
 stop
 end
 subroutine display (elements, dimensions, array,
size)
 integer elements, dimensions, array, size
 dimension array(size)
 write (6,1) dimensions, elements
 1 format (/ 1H , 'Display of ', i1, '-dimensional
array ',
 - 'with ', i1, ' elements per
dimension ...')
 write (6,2) array
 2 format (16 (1x, i3))
 return
 end

Display of 1-dimensional array with 2 elements per
dimension ...
 1 2
Display of 2-dimensional array with 2 elements per
dimension ...
 1 2 3 4
Display of 3-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8
Display of 4-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16
Display of 5-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16
 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32

Display of 6-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16
 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32
 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48
 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64
Display of 7-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16
 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32
 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48
 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64
 65 66 67 68 69 70 71 72 73 74 75 76 77 78
79 80
 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96
 97 98 99 100 101 102 103 104 105 106 107 108 109 110
111 112
113 114 115 116 117 118 119 120 121 122 123 124 125 126
127 128

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-2. C array example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 6-2. C array example program. */
 #define n 2
 main ()
 {
 int one[n];
 int two[n][n];
 int three[n][n][n];
 int four[n][n][n][n];
 int five[n][n][n][n][n];
 int six[n][n][n][n][n][n];
 int seven[n][n][n][n][n][n][n];
 int n1, n2, n3, n4, n5, n6, n7;
 int i1, i2, i3, i4, i5, i6, i7, k;
 void display (int elements, int dimensions,
 int *array, int size);
 n1 = n;
 n2 = n1 * n;
 n3 = n2 * n;
 n4 = n3 * n;
 n5 = n4 * n;
 n6 = n5 * n;
 n7 = n6 * n;
 k = 0;
 for (i7=0; i7<n; i7++) {
 for (i6=0; i6<n; i6++) {
 for (i5=0; i5<n; i5++) {
 for (i4=0; i4<n; i4++) {
 for (i3=0; i3<n; i3++) {
 for (i2=0; i2<n; i2++) {
 for (i1=0; i1<n; i1++) {
 k = k + 1;
 if (k <= n1) one[i1] = k;
 if (k <= n2) two[i2][i1] = k;
 if (k <= n3) three[i3][i2][i1] = k;
 if (k <= n4) four[i4][i3][i2][i1] = k;
 if (k <= n5) five[i5][i4][i3][i2][i1] = k;

 if (k <= n6) six[i6][i5][i4][i3][i2][i1] = k;
 seven[i7][i6][i5][i4][i3][i2][i1] = k;
 }
 }
 }
 }
 }
 }
 }
 display (n, 1, &one[0], n1);
 display (n, 2, &two[0][0], n2);
 display (n, 3, &three[0][0][0], n3);
 display (n, 4, &four[0][0][0][0], n4);
 display (n, 5, &five[0][0][0][0][0], n5);
 display (n, 6, &six[0][0][0][0][0][0], n6);
 display (n, 7, &seven[0][0][0][0][0][0][0], n7);
 return;
 }
 void display (int elements, int dimensions,
 int *array, int size)
 {
 int i, j, k;
 printf ("Display of %i-dimensional array "
 "with %i elements per dimension ...\n",
 dimensions, elements);
 j = -1;
 for (i=0; i<size; i++) {
 for (k=1; k<=16; k++) {
 j += 1;
 if (j >= size)
 break;
 else
 printf (" %3i", *(array+j));
 }
 if (j < size-1)
 printf ("\n");
 }
 printf ("\n\n");
 return;
 }

Display of 1-dimensional array with 2 elements per
dimension ...
 1 2
Display of 2-dimensional array with 2 elements per
dimension ...
 1 2 3 4
Display of 3-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8
Display of 4-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16
Display of 5-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16
 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32
Display of 6-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16
 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32
 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48
 49 50 51 52 53 54 55 56 57 58 59 60 61
62 63 64
Display of 7-dimensional array with 2 elements per
dimension ...
 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16
 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32
 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48
 49 50 51 52 53 54 55 56 57 58 59 60 61
62 63 64

 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79 80
 81 82 83 84 85 86 87 88 89 90 91 92 93
94 95 96
 97 98 99 100 101 102 103 104 105 106 107 108 109
110 111 112
 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-3. C array in C initialization order.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 6-3. C array in C initialization order. */
 .
 .
 .
 for (i7=0; i7<n; i7++) {
 for (i6=0; i6<n; i6++) {
 for (i5=0; i5<n; i5++) {
 for (i4=0; i4<n; i4++) {
 for (i3=0; i3<n; i3++) {
 for (i2=0; i2<n; i2++) {
 for (i1=0; i1<n; i1++) {
 k = k + 1;
 if (k <= n1) one[i1] = k;
 if (k <= n2) two[i1][i2] = k;
 if (k <= n3) three[i1][i2][i3] = k;
 if (k <= n4) four[i1][i2][i3][i4] = k;
 if (k <= n5) five[i1][i2][i3][i4][i5] = k;
 if (k <= n6) six[i1][i2][i3][i4][i5][i6] = k;
 seven[i1][i2][i3][i4][i5][i6][i7] = k;
 }
 }
 }
 }
 }
 }
 }
 .
 .
 .

Display of 1-dimensional array with 2 elements per
dimension ...
 1 2
Display of 2-dimensional array with 2 elements per
dimension ...
 1 3 2 4

Display of 3-dimensional array with 2 elements per
dimension ...
 1 5 3 7 2 6 4 8
Display of 4-dimensional array with 2 elements per
dimension ...
 1 9 5 13 3 11 7 15 2 10 6 14 4
12 8 16
Display of 5-dimensional array with 2 elements per
dimension ...
 1 17 9 25 5 21 13 29 3 19 11 27 7
23 15 31
 2 18 10 26 6 22 14 30 4 20 12 28 8
24 16 32
Display of 6-dimensional array with 2 elements per
dimension ...
 1 33 17 49 9 41 25 57 5 37 21 53 13
45 29 61
 3 35 19 51 11 43 27 59 7 39 23 55 15
47 31 63
 2 34 18 50 10 42 26 58 6 38 22 54 14
46 30 62
 4 36 20 52 12 44 28 60 8 40 24 56 16
48 32 64
Display of 7-dimensional array with 2 elements per
dimension ...
 1 65 33 97 17 81 49 113 9 73 41 105 25
89 57 121
 5 69 37 101 21 85 53 117 13 77 45 109 29
93 61 125
 3 67 35 99 19 83 51 115 11 75 43 107 27
91 59 123
 7 71 39 103 23 87 55 119 15 79 47 111 31
95 63 127
 2 66 34 98 18 82 50 114 10 74 42 106 26
90 58 122
 6 70 38 102 22 86 54 118 14 78 46 110 30
94 62 126
 4 68 36 100 20 84 52 116 12 76 44 108 28
92 60 124

 8 72 40 104 24 88 56 120 16 80 48 112 32
96 64 128

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-4. Fortran array index example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

c Fig. 6-4. Fortran array index example program.
 program main
 integer minus, split, normal,
plus, i
 dimension minus(-9:-3), split(-3:3), normal(7),
plus(3:9)
 do 1 i=1, 7, 1
 minus(i-10) = i
 split(i-4) = i
 normal(i) = i
 plus(i+2) = i
 1 continue
 write (6,2)
 2 format (1H)
 write (6,3)
 3 format (1H , ' First Element
Last Element'
 - / 1H , 'Array Index Value
Index Value'
 - / 1H , '------- ----- -----
----- -----')
 write (6,4) minus(-9), minus(-3), split(-3),
split(3),
 - normal(1), normal(7), plus(3),
plus(9)
 4 format (1H , 'minus -9', i8, '
-3', i7
 - / 1H , 'split -3', i8, '
3', i7
 - / 1H , 'normal 1', i8, '
7', i7
 - / 1H , 'plus 3', i8, '
9', i7)
 write (6,5) (split(i), i=-3, 3)
 5 format (/ 1H , 'split array:', 7i2)
 write (6,6) (normal(i), i=1, 7)
 6 format (/ 1H , 'normal array:', 7i2)

 write (6,2)
 stop
 end

 First Element Last Element
Array Index Value Index Value
------- ----- ----- ----- -----
minus -9 1 -3 7
split -3 1 3 7
normal 1 1 7 7
plus 3 1 9 7
split array: 1 2 3 4 5 6 7
normal array: 1 2 3 4 5 6 7

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-5. C array index example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 6-5. C array index example program. */
 main ()
 {
 int minus[7], split[7], normal[7], plus[7], i;
 int m=0, s=0, n=0, p=0;
 int *SPLIT;
 int *NORMAL;
 m -= -9;
 s -= -3;
 n -= 1;
 p -= 3;
 for (i=1; i<=7; i++) {
 minus[i+m-10] = i;
 split[i+s-4] = i;
 normal[i+n] = i;
 plus[i+p+2] = i;
 }
 printf ("\n");
 printf (" First Element Last Element\n"
 "Array Index Value Index Value\n"
 "------- ----- ----- ----- -----\n");
 printf ("minus %i %i %i %i\n"
 "split %i %i %i %i\n"
 "normal %i %i %i %i\n"
 "plus %i %i %i %i\n",
 m-9, minus[m-9], m-3, minus[m-3],
 s-3, split[s-3], s+3, split[s+3],
 n+1, normal[n+1], n+7, normal[n+7],
 p+3, plus[p+3], p+9, plus[p+9]);
 SPLIT = &split[3];
 printf ("\nsplit array:");
 for (i=-3; i<=3; i++) {
 printf ("%2i", SPLIT[i]);
 }
 printf ("\n");
 NORMAL = normal - 1;

 printf ("\nnormal array:");
 for (i=1; i<=7; i++) {
 printf ("%2i", NORMAL[i]);
 }
 printf ("\n");
 return;
 }

 First Element Last Element
Array Index Value Index Value
------- ----- ----- ----- -----
minus 0 1 6 7
split 0 1 6 7
normal 0 1 6 7
plus 0 1 6 7
split array: 1 2 3 4 5 6 7
normal array: 1 2 3 4 5 6 7

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-6. C arrays treated as pointers.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 6-6. C arrays treated as pointers. */
 main ()
 {
 int i, j, k;
 int square[3][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 int *SQUARE;
 int *Square[3];
 int even[3][3] = { {10}, {40, 50}, {70, 80, 90} };
 int *uneven[3];
 int unrow0[1] = { 10 };
 int unrow1[2] = { 40, 50 };
 int unrow2[3] = { 70, 80, 90 };
 printf ("\nsquare array ...\n");
 for (i=0; i<3; i++) {
 for (j=0; j<3; j++) {
 printf (" %i", square[i][j]);
 }
 printf ("\n");
 }
 SQUARE = &square[0][0];
 printf ("\nSQUARE (1 pointer to "
 "square array) ...\n");
 k = -1;
 for (i=0; i<3; i++) {
 for (j=0; j<3; j++) {
 k += 1;
 printf (" %i", *(SQUARE+k));
 }
 printf ("\n");
 }
 Square[0] = &square[0][0];
 Square[1] = &square[1][0];
 Square[2] = &square[2][0];
 printf ("\nSquare (array of 3 pointers: "
 "1 per row of square array) ...\n");
 for (i=0; i<3; i++) {

 for (j=0; j<3; j++) {
 printf (" %i", Square[i][j]);
 }
 printf ("\n");
 }
 printf ("\neven array (%i bytes) ...\n",
 sizeof (even) / sizeof (int));
 for (i=0; i<3; i++) {
 for (j=0; j<3; j++) {
 printf (" %2i", even[i][j]);
 }
 printf ("\n");
 }
 uneven[0] = &unrow0[0];
 uneven[1] = &unrow1[0];
 uneven[2] = &unrow2[0];
 k = sizeof (unrow0) + sizeof (unrow1) + sizeof (unrow2);
 k /= sizeof (int);
 printf ("\nuneven array (%i bytes) ...\n", k);
 for (i=0; i<3; i++) {
 for (j=0; j<=i; j++) {
 printf (" %2i", uneven[i][j]);
 }
 printf ("\n");
 }
 return;
 }

square array ...
 1 2 3
 4 5 6
 7 8 9
SQUARE (1 pointer to square array) ...
 1 2 3
 4 5 6
 7 8 9
Square (array of 3 pointers: 1 per row of square array)
...
 1 2 3

 4 5 6
 7 8 9
even array (9 bytes) ...
 10 0 0
 40 50 0
 70 80 90
uneven array (6 bytes) ...
 10
 40 50
 70 80 90

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-7. C array memory allocation example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 6-7. C array memory allocation example program. */
 #include <stdio.h>
 #include <stdlib.h>
 main (int argc, char *argv[])
 {
 int i, j, k;
 int fixed[3][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 int rows = 0;
 int columns = 0;
 int **adjust;
 void adisplay (int **array, int I, int J);
 void fdisplay (int array[3][3]);
 printf ("\n%s program invoked with %i arguments ...\n",
 argv[0], argc-1);
 if (argc != 3) {
 printf ("ERROR! Usage is %s rows columns!\n",
 argv[0]);
 exit (EXIT_FAILURE);
 }
 rows = (int) strtol (argv[1], NULL, 10);
 columns = (int) strtol (argv[2], NULL, 10);
 printf ("\nallocating space for %i x %i array ...\n",
 rows, columns);
 adjust = (int **) calloc ((size_t) rows,
 (size_t) sizeof (int));
 if (adjust == NULL) {
 printf ("ERROR! Can not allocate "
 "per-row pointers!\n");
 exit (EXIT_FAILURE);
 }
 for (i=0; i<rows; i++) {
 adjust[i] = (int *) calloc ((size_t) columns,
 (size_t) sizeof (int));
 if (adjust[i] == NULL) {
 printf ("ERROR! Can not allocate column"
 "pointers for row %i!\n");

 exit (EXIT_FAILURE);
 }
 }
 k = 0;
 for (i=0; i<rows; i++) {
 for (j=0; j<columns; j++) {
 k += 1;
 adjust[i][j] = k;
 }
 }
 printf ("\nadjustable dimension %i x %i array is ...\n",
 rows, columns);
 adisplay (adjust, rows, columns);
 printf ("\nfree allocated memory for adjust array ...\n");
 for (i=0; i<rows; i++) {
 free (adjust[i]);
 }
 free (adjust);
 printf ("\nfixed dimension 3 x 3 array is ...\n");
 fdisplay (fixed);
 return;
 }
 void adisplay (int **array, int I, int J)
 {
 int i, j;
 for (i=0; i<I; i++) {
 for (j=0; j<J; j++) {
 printf (" %3i", array[i][j]);
 }
 printf ("\n");
 }
 return;
 }
 void fdisplay (int array[3][3])
 {
 int i, j;
 for (i=0; i<3; i++) {
 for (j=0; j<3; j++) {
 printf (" %3i", array[i][j]);
 }

 printf ("\n");
 }
 return;
 }

FIG67.RUN program invoked with 2 arguments ...
allocating space for 3 x 9 array ...
adjustable dimension 3 x 9 array is ...
 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18
 19 20 21 22 23 24 25 26 27
free allocated memory for adjust array ...
fixed dimension 3 x 3 array is ...
 1 2 3
 4 5 6
 7 8 9

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-8. C character array example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 6-8. C character array example program. */
 #include <stdio.h>
 main()
 {
 int i, I=3, j, J=3, k;
 int cints0d = 'a';
 int cints1d[3] = { 'b', 'c', 'd' };
 int cints2d[3][3] = { { 'e', 'f', 'g' },
 { 'h', 'i', 'j' },
 { 'k', 'l', 'm' } };
 char chars0d = 'A';
 char chars1d[3] = { 'B', 'C', 'D' };
 char chars2d[3][3] = { { 'E', 'F', 'G' },
 { 'H', 'I', 'J' },
 { 'K', 'L', 'M' } };
 char fixed[2][9] = { { "nl" }, { "opqrstuv" } };
 char *adjust[] = { "NL", "OPQRSTUV" };
 char *string0d = "An isolated string.";
 char *string1d[] = { "A collection of strings",
 "stored",
 "in a one-dimensional char *",
 "\n ",
 "array with, intially,",
 "an unspecified number of rows." };
 char *string2d[][3] = { { "A table", "of strings" },
 { "with a variable" },
 { "number of rows" },
 { "\n ",
 "and a fixed number (3)",
 "of columns per row." } };
 int string2d_cols = 3;
 printf ("\n\Single characters (int) ...\n");
 printf (" %c", cints0d);
 printf (" %c %c %c", cints1d[0], cints1d[1], cints1d[2]);
 for (i=0; i<I; i++) {
 for (j=0; j<J; j++) {

 printf (" %c", cints2d[i][j]);
 }
 }
 printf ("\n\nSingle characters (char) ...\n");
 printf (" %c", chars0d);
 printf (" %c %c %c", chars1d[0], chars1d[1], chars1d[2]);
 for (i=0; i<I; i++) {
 for (j=0; j<J; j++) {
 printf (" %c", chars2d[i][j]);
 }
 }
 printf ("\n\nFixed and adjustable arrays ...\n");
 printf (" fixed array ([%s] [%s])\n",
 fixed[0], fixed[1]);
 printf (" adjust array ([%s] [%s])\n",
 adjust[0], adjust[1]);
 printf ("\nStrings ...\n");
 printf (" %s\n", string0d);
 k = sizeof (string1d) / sizeof (char *);
 for (i=0; i<k; i++) {
 printf (" %s", string1d[i]);
 }
 printf ("\n");
 k = (sizeof (string2d) / sizeof (char *));
 k /= string2d_cols;
 for (i=0; i<k; i++) {
 for (j=0; j<string2d_cols; j++) {
 if (string2d[i][j] != NULL)
 printf (" %s", string2d[i][j]);
 }
 }
 printf ("\n");
 return;
 }

Single characters (int) ...
 a b c d e f g h i j k l m
Single characters (char) ...
 A B C D E F G H I J K L M

Fixed and adjustable arrays ...
 fixed array ([nl] [opqrstuv])
 adjust array ([NL] [OPQRSTUV])
Strings ...
 An isolated string.
 A collection of strings stored in a one-dimensional
char *
 array with, intially, an unspecified number of
rows.
 A table of strings with a variable number of rows
 and a fixed number (3) of columns per row.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 6-9. C structures.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 6-9. C structures. */
 #include <stdio.h>
 main()
 {
 struct part { char title[10];
 char first[25];
 char middle[25];
 char last[30];
 char suffix[10]; };
 struct whole { struct part nameparts;
 char fullname[100];
 long telno; } person[2];
 struct whole *individual;
 int newline;
 int i, I=2, j;
 for (i=0; i<I; i++) {
 printf ("\nEnter a name and "
 "telephone number ...\n");
 printf ("title (without punctuation) : ");
 gets (person[i].nameparts.title);
 printf ("first name : ");
 gets (person[i].nameparts.first);
 printf ("middle initial (with .) or name: ");
 gets (person[i].nameparts.middle);
 printf ("last name : ");
 gets (person[i].nameparts.last);
 printf ("I, Jr., Esq. or other suffix : ");
 gets (person[i].nameparts.suffix);
 person[i].fullname[0] = '\0';
 strncat (person[i].fullname,
 person[i].nameparts.title, 10);
 if (strlen (person[i].nameparts.title) > 0)
 strncat (person[i].fullname, ". ", 2);
 strncat (person[i].fullname,
 person[i].nameparts.first, 25);
 if (strlen (person[i].nameparts.first) > 0)

 strncat (person[i].fullname, " ", 1);
 strncat (person[i].fullname,
 person[i].nameparts.middle, 25);
 if (strlen (person[i].nameparts.middle) > 0)
 strncat (person[i].fullname, " ", 1);
 strncat (person[i].fullname,
 person[i].nameparts.last, 30);
 if (strlen (person[i].nameparts.last) > 0)
 strncat (person[i].fullname, " ", 1);
 if (strlen (person[i].nameparts.suffix) > 0) {
 j = strlen (person[i].fullname) - 1;
 if (person[i].fullname[j] == ' ')
 person[i].fullname[j] = '\0';
 strncat (person[i].fullname, ", ", 2);
 strncat (person[i].fullname,
 person[i].nameparts.suffix, 10);
 }
 j = strlen (person[i].fullname) - 1;
 if (person[i].fullname[j] == ' ')
 person[i].fullname[j] = '\0';
 printf ("telephone number : ");
 scanf ("%ld", &person[i].telno);
 newline = getchar();
 }
 printf ("\n");
 for (i=0; i<I; i++) {
 individual = &person[i];
 printf ("%s can be reached at %ld.\n",
 person[i].fullname, individual->telno);
 }
 return;
 }

Enter a name and telephone number ...
title (without punctuation) : Mr
first name : John
middle initial (with .) or name: K.
last name : Smith
I, Jr., Esq. or other suffix : Jr.

telephone number : 6671234
Enter a name and telephone number ...
title (without punctuation) : Ms
first name : Mary
middle initial (with .) or name: Elizabeth
last name : Jones
I, Jr., Esq. or other suffix :
telephone number : 5568000
Mr. John K. Smith, Jr. can be reached at 6671234.
Ms. Mary Elizabeth Jones can be reached at 5568000.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-1. C source code file attributes.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-1. C source code file attributes. */
 main ()
{
 printf ("\nAttributes for [%s] source code file ...\n", __FILE__);
 printf ("\n");
 printf ("last compiled on: %s\n", __DATE__);
 printf ("last compiled at: %s\n", __TIME__);
 printf ("\n");
 printf ("actual line number %d corresponds ", __LINE__ + 2);
 #line 1000
 printf ("to formal line number %d.\n", __LINE__);
 printf ("\n");
 return;
}

Attributes for [fig71.c] source code file ...
last compiled on: Nov 26 1990
last compiled at: 09:52:09
actual line number 12 corresponds to formal line number
1000.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-2. C include file demonstration.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-2. C include file demonstration. */
 main ()
 {
 void func ();
 printf ("MAIN ");
 #include "inc.one"
 func ();
 return;
 }
 void func ()
 {
 printf ("FUNC ");
 #include "inc.one"
 }
 /* inc.one */
 printf ("... printed from the inc.one file.\n");

MAIN ... printed from the inc.one file.
FUNC ... printed from the inc.one file.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-3. C include file nesting.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-3. C include file nesting. */
 main()
 {
 printf ("\nInclude files nested 8 deep.\n\n");
 #include "inc.d01"
 printf ("\nReturned to MAIN program.\n");
 }
 /* inc.d01 */
 printf (" inc.d01 ... level 1\n");
 #include "inc.d02"
 /* inc.do2 */
 printf (" inc.d02 ... level 2\n");
 #include "inc.d03"
 /* inc.d03 */
 printf (" inc.d03 ... level 3\n");
 #include "inc.d04"
 /* inc.d04 */
 printf (" inc.d04 ... level 4\n");
 #include "inc.d05"
 /* inc.d05 */
 printf (" inc.d05 ... level 5\n");
 #include "inc.d06"
 /* inc.d06 */
 printf (" inc.d06 ... level 6\n");
 #include "inc.d07"
 /* inc.d07 */
 printf (" inc.d07 ... level 7\n");
 #include "inc.d08"
 /* inc.d08 */
 printf (" inc.d08 ... level 8\n");

Include files nested 8 deep.
 inc.d01 ... level 1
 inc.d02 ... level 2
 inc.d03 ... level 3
 inc.d04 ... level 4

 inc.d05 ... level 5
 inc.d06 ... level 6
 inc.d07 ... level 7
 inc.d08 ... level 8
Returned to MAIN program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-4. C program structure example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-4. C program structure example program. */
 #include <string.h>
 int globali;
 float globalf;
 char *globalc;
 main ()
 {
 int locali;
 float localf;
 char *localc;
 char *unit;
 void gdisplay ();
 void gmodify ();
 void ldisplay (int, float, char *);
 void lmodify (int *, float *, char *);
 void udisplay (char *);
 unit = "MAIN";
 globali = 1;
 globalf = 2.0F;
 globalc = "a";
 locali = 3;
 localf = 4.0F;
 localc = "b";
 udisplay (unit);
 printf ("initial values ...");
 gdisplay ();
 ldisplay (locali, localf, localc);
 udisplay (unit);
 printf ("modified in subprograms ...");
 gmodify ();
 lmodify (&locali, &localf, localc);
 udisplay (unit);
 printf ("returned from subprograms ...");
 gdisplay ();
 ldisplay (locali, localf, localc);
 udisplay (unit);

 printf ("modified in main program ...");
 globali = 9;
 globalf = 10.0F;
 globalc = "e";
 locali = 11;
 localf = 12.0F;
 localc = "f";
 gdisplay ();
 ldisplay (locali, localf, localc);
 printf ("\n");
 return;
 }
 void udisplay (char *unit)
 {
 if (strcmp (unit, "MAIN") == 0)
 printf ("\n");
 printf ("\n[%-8s] ", unit);
 return;
 }
 void gdisplay ()
 {
 char *unit = "GDISPLAY";
 udisplay (unit);
 printf ("%2i %4.1f %s", globali, globalf, globalc);
 return;
 }
 void ldisplay (int locali, float localf, char *localc)
 {
 char *unit = "LDISPLAY";
 udisplay (unit);
 printf ("%2i %4.1f %s", locali, localf, localc);
 return;
 }
 void gmodify ()
 {
 char *unit = "GMODIFY";
 udisplay (unit);
 globali = 5;
 globalf = 6.0F;
 globalc = "c";

 printf ("%2i %4.1f %s", globali, globalf, globalc);
 return;
 }
 void lmodify (int *locali, float *localf, char *localc)
 {
 char *unit = "LMODIFY";
 udisplay (unit);
 *locali = 7;
 *localf = 8.0F;
 strcpy (localc, "d");
 printf ("%2i %4.1f %s", *locali, *localf, localc);
 return;
 }

[MAIN] initial values ...
[GDISPLAY] 1 2.0 a
[LDISPLAY] 3 4.0 b
[MAIN] modified in subprograms ...
[GMODIFY] 5 6.0 c
[LMODIFY] 7 8.0 d
[MAIN] returned from subprograms ...
[GDISPLAY] 5 6.0 c
[LDISPLAY] 7 8.0 d
[MAIN] modified in main program ...
[GDISPLAY] 9 10.0 e
[LDISPLAY] 11 12.0 f

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-5. C program structure include file example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-5. C program structure include file example program. */
 #include <string.h>
 #include "global"
 main ()
 {
 int locali;
 float localf;
 char *localc;
 #include "local"
 #include "proto"
 unit = "MAIN";
 globali = 1;
 globalf = 2.0F;
 globalc = "a";
 locali = 3;
 localf = 4.0F;
 localc = "b";
 udisplay (unit);
 printf ("initial values ...");
 gdisplay ();
 ldisplay (locali, localf, localc);
 udisplay (unit);
 printf ("modified in subprograms ...");
 gmodify ();
 lmodify (&locali, &localf, localc);
 udisplay (unit);
 printf ("returned from subprograms ...");
 gdisplay ();
 ldisplay (locali, localf, localc);
 udisplay (unit);
 printf ("modified in main program ...");
 globali = 9;
 globalf = 10.0F;
 globalc = "e";
 locali = 11;
 localf = 12.0F;

 localc = "f";
 gdisplay ();
 ldisplay (locali, localf, localc);
 printf ("\n");
 return;
 /* global */
 int globali;
 float globalf;
 char *globalc;
 /* local */
 char *unit;
 /* proto */
 void gdisplay ();
 void gmodify ();
 void ldisplay (int, float, char *);
 void lmodify (int *, float *, char *);
 void udisplay (char *);
 /* UDISPLAY */
 #include "global"
 void udisplay (char *dummy)
 {
 #include "local"
 #include "proto"
 unit = dummy;
 if (strcmp (unit, "MAIN") == 0)
 printf ("\n");
 printf ("\n[%-8s] ", unit);
 return;
 }
 /* GDISPLAY */
 #include "global"
 void gdisplay ()
 {
 #include "local"
 #include "proto"
 unit = "GDISPLAY";
 udisplay (unit);
 printf ("%2i %4.1f %s", globali, globalf, globalc);
 return;
 }

 /* LDISPLAY */
 #include "global"
 void ldisplay (int locali, float localf, char *localc)
 {
 #include "local"
 #include "proto"
 unit = "LDISPLAY";
 udisplay (unit);
 printf ("%2i %4.1f %s", locali, localf, localc);
 return;
 }
 /* GMODIFY */
 #include "global"
 void gmodify ()
 {
 #include "local"
 #include "proto"
 unit = "GMODIFY";
 udisplay (unit);
 globali = 5;
 globalf = 6.0F;
 globalc = "c";
 printf ("%2i %4.1f %s", globali, globalf, globalc);
 return;
 }
 /* LMODIFY */
 #include "global"
 void lmodify (int *locali, float *localf, char *localc)
 {
 #include "local"
 #include "proto"
 unit = "LMODIFY";
 udisplay (unit);
 *locali = 7;
 *localf = 8.0F;
 strcpy (localc, "d");
 printf ("%2i %4.1f %s", *locali, *localf, localc);
 return;
 }

[MAIN] initial values ...
[GDISPLAY] 1 2.0 a
[LDISPLAY] 3 4.0 b
[MAIN] modified in subprograms ...
[GMODIFY] 5 6.0 c
[LMODIFY] 7 8.0 d
[MAIN] returned from subprograms ...
[GDISPLAY] 5 6.0 c
[LDISPLAY] 7 8.0 d
[MAIN] modified in main program ...
[GDISPLAY] 9 10.0 e
[LDISPLAY] 11 12.0 f

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-6. C system function.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-6. C system function. */
 #include <stdlib.h>
 main ()
 {
 int error;
 int i, I=3;
 char *commands[3] = { "DATE", "DIRECTORY *.C", "VERSION" };
 error = system (NULL);
 if (error == 0) {
 printf ("ERROR! Command processor does "
 "not exist!\n");
 exit (EXIT_FAILURE);
 }
 for (i=0; i<I; i++) {
 error = system (commands[i]);
 printf ("\n>>> C system function returned %i "
 "executing '%s' command.\n",
 error, commands[i]);
 }
 printf ("\n");
 return;
 }

Sun 26 Feb 1995
>>> C system function returned 0 executing 'DATE'
command.
FIG71.C
FIG72.C
FIG73.C
FIG74.C
FIG75.C
FIG76.C
>>> C system function returned 0 executing 'DIRECTORY
*.C' command.
Operating System Version 1.23

>>> C system function returned 0 executing 'VERSION'
command.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-7. C signal processing.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-7. C signal processing. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <signal.h>
 main ()
 {
 int error;
 void bother();
 printf ("\nRegister SIGINT handler ...\n");
 if (signal (SIGINT, bother) == SIG_ERR) {
 printf ("ERROR! Can not register bother as "
 "SIGINT handler!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf ("\nRaising SIGINT signal ");
 if (raise (SIGINT) !=0) {
 printf ("ERROR! Can not raise SIGINT signal!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf (" SIGINT handler returned.\n");
 printf ("\nUn-register SIGINT handler ...\n");
 if (signal (SIGINT, SIG_DFL) == SIG_ERR) {
 printf ("ERROR! Can not un-register bother as "
 "SIGINT handler!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf ("\nSIGINT handler un-registered.\n");
 return;
 }
 void bother (void)
 {
 printf ("... HANDLER ...");
 return;

 }

Register SIGINT handler ...
Raising SIGINT signal ... HANDLER ... SIGINT handler
returned.
Un-register SIGINT handler ...
SIGINT handler un-registered.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-8. C signal processing: CTRL-C entered from keyboard.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-8. C signal processing: CTRL-C entered from keyboard. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <signal.h>
 main ()
 {
 int error;
 int entry;
 void controlc();
 printf ("\nRegister CTRL-C handler ...\n");
 if (signal (SIGINT, controlc) == SIG_ERR) {
 printf ("ERROR! Can not register controlc as "
 "CTRL-C handler!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf ("\nEnter a CTRL-C: ");
 entry = getchar ();
 printf ("\nUn-register CTRL-C handler ...\n");
 if (signal (SIGINT, SIG_DFL) == SIG_ERR) {
 printf ("ERROR! Can not un-register controlc as "
 "CTRL-C handler!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf ("\nCTRL-C handler un-registered.\n");
 return;
 }
 void controlc (void)
 {
 printf ("\n... CTRL-C ENTERED ...");
 return;
 }

Register CTRL-C handler ...
Enter a CTRL-C: ^C

... CTRL-C ENTERED ...
Un-register CTRL-C handler ...
CTRL-C handler un-registered.

Register CTRL-C handler ...
Enter a CTRL-C: X
Un-register CTRL-C handler ...
CTRL-C handler un-registered.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-9. C signal processing: CTRL-C entered and ignored.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-9. C signal processing: CTRL-C entered and ignored. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <signal.h>
 main ()
 {
 int error;
 int entry;
 void controlc();
 printf ("\nRegister CTRL-C handler ...\n");
 if (signal (SIGINT, controlc) == SIG_ERR) {
 printf ("ERROR! Can not register controlc as "
 "CTRL-C handler!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf ("\nPrepare to ignore CTRL-Cs ...\n");
 if (signal (SIGINT, SIG_IGN) == SIG_ERR) {
 printf ("ERROR! Can not ignore CTRL-C "
 "signal!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf ("\nEnter a CTRL-C: ");
 entry = getchar ();
 printf ("\nUn-register CTRL-C handler ...\n");
 if (signal (SIGINT, SIG_DFL) == SIG_ERR) {
 printf ("ERROR! Can not un-register controlc as "
 "CTRL-C handler!\n");
 perror (" ");
 exit (EXIT_FAILURE);
 }
 printf ("\nCTRL-C handler un-registered.\n");
 return;
 }
 void controlc (void)

 {
 printf ("\n... CTRL-C ENTERED ...");
 return;
 }

Register CTRL-C handler ...
Prepare to ignore CTRL-Cs ...
Enter a CTRL-C: ^C
Un-register CTRL-C handler ...
CTRL-C handler un-registered.

Register CTRL-C handler ...
Prepare to ignore CTRL-Cs ...
Enter a CTRL-C: X
Un-register CTRL-C handler ...
CTRL-C handler un-registered.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 7-10. C atexit function example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 7-10. C atexit function example program. */
 #include <stdlib.h>
 main ()
 {
 void finished ();
 void accounting ();
 if (atexit (accounting) != 0) {
 printf ("ERROR! Can not register accounting "
 "routine!\n");
 exit (EXIT_FAILURE);
 }
 if (atexit (finished) != 0) {
 printf ("ERROR! Can not register finished "
 "routine!\n");
 exit (EXIT_FAILURE);
 }
 printf ("\nExecution begins.\n");
 printf ("\nExecution ends.\n\n");
 exit (EXIT_SUCCESS);
 }
 void finished ()
 {
 printf ("END OF EXECUTION (finished)\n");
 }
 void accounting ()
 {
 printf ("JOB ACCOUNTING DATA UPDATED (accounting)\n");
 }

Execution begins.
Execution ends.
END OF EXECUTION (finished)
JOB ACCOUNTING DATA UPDATED (accounting)

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-1. C read-and-write internal record example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 8-1. C read-and-write internal record example program. */
 #include <stdio.h>
 main ()
 {
 int j;
 int J=2;
 int fields;
 int i;
 float f;
 char c[65];
 char b[3];
 int bytes_read;
 int newline;
 int bytes_converted;
 char string[81];
 for (j=1; j<=J; j++) {
 printf ("\nEnter data (%i of %i): ", j, J);
 fields = scanf ("%i %f %s %c%c%c%n",
 &i, &f, c, &b[0], &b[1], &b[2],
 &bytes_read);
 newline = getchar();
 printf ("\n%i fields read from CRT ..."
 "\n%i bytes read from CRT ... ",
 fields, bytes_read);
 if (fields != 6) {
 printf ("ERROR! Read error after %i-th "
 "field!\n", fields);
 break;
 }
 bytes_converted = sprintf (string,
 "%i %f %s %.3s",
 i, f, c, &b[0]);
 printf ("\n%i bytes converted into characters ..."
 "\ncharacter string is [%.*s]\n",
 bytes_converted, bytes_converted, string);
 i = 7;

 f = 8.9F;
 c[0] = 'w';
 c[1] = '\0';
 b[0] = 'X';
 b[1] = 'Y';
 b[2] = 'Z';
 printf ("\nvariables reset to %i %f %s %c%c%c\n",
 i, f, c, b[0], b[1], b[2]);
 fields = sscanf (string,
 "%i %f %s %c%c%c%n",
 &i, &f, c, &b[0], &b[1], &b[2],
 &bytes_converted);
 printf ("\n%i fields read from string ..."
 "\n%i bytes converted from string ... ",
 fields, bytes_converted);
 if (fields != 6) {
 printf ("ERROR! Conversion error after %i-th "
 "field!\n", fields);
 break;
 }
 printf ("\nvariables now equal to %i %f %s %c%c%c\n",
 i, f, c, b[0], b[1], b[2]);
 }
 return;
 }

Enter data (1 of 2): 1 2.3 aaaaaaaaaa BBB
6 fields read from CRT ...
20 bytes read from CRT ...
25 bytes converted into characters ...
character string is [1 2.300000 aaaaaaaaaa BBB]
variables reset to 7 8.900000 w XYZ
6 fields read from string ...
25 bytes converted from string ...
variables now equal to 1 2.300000 aaaaaaaaaa BBB
Enter data (2 of 2): 4 5.6 ccc DDD
6 fields read from CRT ...
13 bytes read from CRT ...
18 bytes converted into characters ...

character string is [4 5.600000 ccc DDD]
variables reset to 7 8.900000 w XYZ
6 fields read from string ...
18 bytes converted from string ...
variables now equal to 4 5.600000 ccc DDD

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-2. C program for single character terminal I/O.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-2. C program for single character terminal I/O. */
 #include <stdio.h>
 main ()
 {
 int character;
 while ((character = getchar()) != EOF)
 putchar (character);
 return;
 }
a
a
A
A
letter
letter

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-3. C program for string terminal I/O.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-3. C program for string terminal I/O. */
 #include <stdio.h>
 #include <stdlib.h>
 main ()
 {
 int i;
 int trials=2;
 char buffer[20];
 int error;
 for (i=1; i<=trials; i++) {
 printf ("\nEnter GETS/PUTS string %d of %d: ",
 i, trials);
 if (gets (buffer) == NULL) {
 printf ("ERROR! gets failed!");
 exit (EXIT_FAILURE);
 }
 error = puts (buffer);
 if (error < 0) {
 printf ("ERROR! puts failed!");
 exit (EXIT_FAILURE);
 }
 }
 for (i=1; i<=trials; i++) {
 printf ("\nEnter FGETS/FPUTS string %d of %d: ",
 i, trials);
 if (fgets (buffer, sizeof(buffer), stdin) == NULL) {
 printf ("ERROR! fgets failed!");
 exit (EXIT_FAILURE);
 }
 error = fputs (buffer, stdout);
 if (error < 0) {
 printf ("ERROR! fputs failed!");
 exit (EXIT_FAILURE);
 }
 }
 return;

 }

Enter GETS/PUTS string 1 of 2: its a
its a
Enter GETS/PUTS string 2 of 2: grand old flag
grand old flag
Enter FGETS/FPUTS string 1 of 2: a high
a high
Enter FGETS/FPUTS string 2 of 2: flying flag
flying flag

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-4. C program for integer numeric terminal I/O.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-4. C program for integer numeric terminal I/O. */
 #include <stdio.h>
 #include <stdlib.h>
 main ()
 {
 int i;
 int trials=2;
 int number;
 int bytes;
 int error;
 int newline;
 for (i=1; i<=trials; i++) {
 printf ("\nEnter number %d of %d: ",
 i, trials);
 error = scanf ("%i%n", &number, &bytes);
 if ((error == EOF)) {
 printf ("ERROR! scanf failed!");
 exit (EXIT_FAILURE);
 }
 else
 printf ("%d items %d bytes "
 "read ... [",
 error, bytes);
 newline = getchar();
 error = printf ("%i%n", number, &bytes);
 if (error < 0) {
 printf ("ERROR! printf failed!");
 exit (EXIT_FAILURE);
 }
 else
 printf ("] ... %d (that is %d) "
 "bytes written.\n",
 error, bytes);
 printf ("\n");
 }
 return;

 }

Enter number 1 of 2: 123
1 items 3 bytes read ... [123] ... 3 (that is 3) bytes
written.
Enter number 2 of 2: 4.99
1 items 1 bytes read ... [4] ... 1 (that is 1) bytes
written.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-5. C program for floating point numeric terminal I/O.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-5. C program for floating point numeric terminal I/O. */
 #include <stdio.h>
 #include <stdlib.h>
 main ()
 {
 int i;
 int trials=2;
 float number;
 int bytes;
 int error;
 int newline;
 for (i=1; i<=trials; i++) {
 printf ("\nEnter number %d of %d: ",
 i, trials);
 error = scanf ("%f%n", &number, &bytes);
 if ((error == EOF)) {
 printf ("ERROR! scanf failed!");
 exit (EXIT_FAILURE);
 }
 else
 printf ("%d items %d bytes "
 "read ... [",
 error, bytes);
 newline = getchar();
 error = printf ("%f%n", number, &bytes);
 if (error < 0) {
 printf ("ERROR! printf failed!");
 exit (EXIT_FAILURE);
 }
 else
 printf ("] ... %d (that is %d) "
 "bytes written.\n",
 error, bytes);
 printf ("\n");
 }
 return;

 }

Enter number 1 of 2: 123
1 items 3 bytes read ... [123.000000] ... 10 (that is
10) bytes written.
Enter number 2 of 2: 4.56
1 items 4 bytes read ... [4.560000] ... 8 (that is 8)
bytes written.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-6. C program for string terminal I/O.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 8-6. C program for string terminal I/O. */
 #include <stdio.h>
 #include <stdlib.h>
 main ()
 {
 int i;
 int trials=2;
 char *string;
 int bytes;
 int error;
 int newline;
 for (i=1; i<=trials; i++) {
 printf ("\nEnter string %d of %d: ",
 i, trials);
 error = scanf ("%s%n", string, &bytes);
 if ((error == EOF)) {
 printf ("ERROR! scanf failed!");
 exit (EXIT_FAILURE);
 }
 else
 printf ("%d items %d bytes "
 "read ... [",
 error, bytes);
 newline = getchar();
 error = printf ("%s%n", string, &bytes);
 if (error < 0) {
 printf ("ERROR! printf failed!");
 exit (EXIT_FAILURE);
 }
 else
 printf ("] ... %d (that is %d) "
 "bytes written.\n",
 error, bytes);
 printf ("\n");
 }
 return;

 }

Enter string 1 of 2: sometime
1 items 8 bytes read ... [sometime] ... 8 (that is 8)
bytes written.
Enter string 2 of 2: someplace
1 items 9 bytes read ... [someplace] ... 9 (that is 9)
bytes written.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-7. C program for string token terminal I/O.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-7. C program for string token terminal I/O. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 main ()
 {
 int i;
 int trials=2;
 char buffer[60];
 int error;
 int bytes;
 int words;
 char *piece;
 struct tokens { char *word; } sentence[10];
 int j;
 for (i=1; i<=trials; i++) {
 printf ("\nEnter string %i of %i: ",
 i, trials);
 if ((gets (buffer) == NULL)) {
 printf ("ERROR! gets failed!");
 exit (EXIT_FAILURE);
 }
 error = printf ("%s%n", buffer, &bytes);
 if (error < 0) {
 printf ("ERROR! printf failed!");
 exit (EXIT_FAILURE);
 }
 else
 printf (" ... string is"
 " %i (that is %i) "
 "bytes long\n", error, bytes);
 piece = strtok (buffer, " ");
 words = 0;
 while (piece != NULL) {
 words++;
 sentence[words-1].word = piece;

 piece = strtok (NULL, " ");
 }
 printf ("\nString %i contains these %i words:\n",
 i, words);
 for (j=0; j<=words-1; j++) {
 printf ("word number %2.2i: %s\n",
 j+1, sentence[j].word);
 }
 }
 return;
 }

Enter string 1 of 2: now is the time for
now is the time for ... string is 19 (that is 19) bytes
long
String 1 contains these 5 words:
word number 01: now
word number 02: is
word number 03: the
word number 04: time
word number 05: for
Enter string 2 of 2: all good men to rally
all good men to rally ... string is 21 (that is 21)
bytes long
String 2 contains these 5 words:
word number 01: all
word number 02: good
word number 03: men
word number 04: to
word number 05: rally

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-8. C isX function example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-8. C isX function example program. */
 #include <stdio.h>
 #include <ctype.h>
 main()
 {
 int c;
 int isa;
 int i;
 while ((c = getchar()) != '\n') {
 printf ("[%c] is", c);
 if (isalnum(c))
 printf (" alphanumeric");
 if (isalpha(c))
 printf (" letter");
 if (iscntrl(c))
 printf (" control");
 if (isdigit(c))
 printf (" numeral");
 if (isgraph(c))
 printf (" printable");
 if (islower(c))
 printf (" lower-case");
 if (isprint(c))
 printf (" printable");
 if (ispunct(c))
 printf (" punctuation");
 if (isspace(c))
 printf (" white space");
 if (isupper(c))
 printf (" upper-case");
 if (isxdigit(c))
 printf (" hex_numeral");
 printf ("\n");
 }
 return;
 }

[W] is alphanumeric letter printable printable upper-
case
[h] is alphanumeric letter printable lower-case
printable
[e] is alphanumeric letter printable lower-case
printable hex_numeral
[n] is alphanumeric letter printable lower-case
printable
[] is printable white space
[i] is alphanumeric letter printable lower-case
printable
[n] is alphanumeric letter printable lower-case
printable
[] is printable white space
[d] is alphanumeric letter printable lower-case
printable hex_numeral
[o] is alphanumeric letter printable lower-case
printable
[u] is alphanumeric letter printable lower-case
printable
[b] is alphanumeric letter printable lower-case
printable hex_numeral
[t] is alphanumeric letter printable lower-case
printable
[,] is printable printable punctuation
[] is printable white space
[d] is alphanumeric letter printable lower-case
printable hex_numeral
[o] is alphanumeric letter printable lower-case
printable
[n] is alphanumeric letter printable lower-case
printable
['] is printable printable punctuation
[t] is alphanumeric letter printable lower-case
printable
[!] is printable printable punctuation

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-9. C program to convert character to numeric values.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-9. C program to convert character to numeric values. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <limits.h>
 #include <float.h>
 #include <errno.h>
 main()
 {
 char source[10];
 int itarget;
 long ltarget;
 float ftarget;
 double dtarget;
 printf ("\nEnter a number: ");
 while ((gets (source)) != NULL) {
 errno = 0;
 dtarget = strtod (source, NULL);
 if (dtarget == 0.0) {
 printf ("ERROR! strtod failed to "
 "convert '%s'!\n", source);
 printf ("errno = %i\n", errno);
 perror ("CONVERT.C");
 goto ERR;
 }
 if ((fabs(dtarget) >= FLT_MIN) &&
 (fabs(dtarget) <= FLT_MAX))
 ftarget = (float) dtarget;
 else
 ftarget = 0.0F;
 if ((ftarget >= LONG_MIN) &&
 (ftarget <= LONG_MAX))
 ltarget = (long) ftarget;
 else
 ltarget = 0L;
 if ((ltarget >= INT_MIN) &&
 (ltarget <= INT_MAX))

 itarget = (int) ltarget;
 else
 itarget = 0;
 printf ("\n[%-10s] => %d %ld %f %f\n",
 source,
 itarget, ltarget, ftarget, dtarget);
ERR: ;
 printf ("\nEnter a number: ");
 }
 return;
 }

Enter a number: number
ERROR! strtod failed to convert 'number'!
errno = 0
Enter a number: -1
[-1] => -1 -1 -1.000000 -1.000000
Enter a number: 2
[2] => 2 2 2.000000 2.000000
Enter a number: 3.0
[3.0] => 3 3 3.000000 3.000000
Enter a number: 4.0e4
[4.0e4] => 0 40000 40000.000000 40000.000000
Enter a number: 5.0e9
[5.0e9] => 0 0 5000000000.000000 5000000000.000000
Enter a number: 6.0e37
[6.0e37] => 0
 0

60000002138196080000000000000000000000.000000

60000000000000000000000000000000000000.000000

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-10. C sequential file access program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-10. C sequential file access program. */
 #include <stdio.h>
 #include <limits.h>
 #include <stdlib.h>
 main ()
 {
 FILE *input;
 int line;
 int MAX_LINES = INT_MAX;
 char record[81];
 int error;
 if ((input = fopen ("sam.dat", "r")) == NULL) {
 printf ("ERROR! Can not open [sams.dat] file!\n");
 exit (EXIT_FAILURE);
 }
 for (line=1; line<=MAX_LINES; line++) {
 if (fgets (record, sizeof(record), input) == NULL) {
 if (feof (input))
 break;
 else
 printf ("ERROR! Read error line %i!\n", line);
 exit (EXIT_FAILURE);
 }
 printf ("Line %5.5i: ", line);
 error = fputs (record, stdout);
 if (error < 0) {
 printf ("ERROR! Display error line %i!\n", line);
 exit (EXIT_FAILURE);
 }
 }
 if (!feof (input)) {
 printf ("ERROR! Premature EOF at line %i!\n", line-1);
 exit (EXIT_FAILURE);
 }
 printf ("\nA total of %i records were read.\n", line-1);
 fclose (input);

 exit (EXIT_SUCCESS);
 }

Line 00001: #include <stdio.h>
Line 00002: #include <limits.h>
Line 00003: #include <stdlib.h>
Line 00004: main ()
Line 00005: {
Line 00006: FILE *input;
Line 00007: int line;
Line 00008: int MAX_LINES = INT_MAX;
Line 00009: char record[81];
Line 00010: int error;
.
.
.
Line 00035: fclose (input);
Line 00036: exit (EXIT_SUCCESS);
Line 00037: }
A total of 37 records were read.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-11. C direct access file program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Figure 8-11. C direct access file program. */
 #include <stdio.h>
 #include <stdlib.h>
 main ()
 {
 FILE *unit;
 size_t lrecl;
 char buffer[64];
 int error;
 int line;
 int MAX_LINES=3;
 struct binary { long number;
 char message[60]; } record;
 size_t length;
 int i;
 int newline;
 long position;
 printf ("\nOpening [dam.dat] file ...\n");
 if ((unit = fopen ("dam.dat", "wb+")) == NULL) {
 printf ("ERROR! Can not open [dam.dat] file!\n");
 exit (EXIT_FAILURE);
 }
 lrecl = sizeof (buffer);
 printf ("\nSetting logical record length "
 "to %i bytes ...\n\n", lrecl);
 error = setvbuf (unit, buffer, _IOFBF, lrecl);
 if (error != 0) {
 printf ("ERROR! Can not set logical "
 "record length!\n");
 exit (EXIT_FAILURE);
 }
 for (line=1; line<=MAX_LINES; line++) {
 printf ("Enter message #%i: ", line);
 fgets (record.message, lrecl, stdin);
 length = strlen (record.message);
 record.message[length-1] = '\0';

 record.number = (long) line;
 error = fwrite (&record, lrecl, 1, unit);
 if (error != 1) {
 printf ("ERROR! Write error record "
 "%i!\n", line);
 exit (EXIT_FAILURE);
 }
 }
 rewind (unit);
 printf ("\nFile contains these records ...\n\n");
 for (line=1; line<=MAX_LINES; line++) {
 error = fread (&record, lrecl, 1, unit);
 if (error != 1) {
 printf ("ERROR! Read error "
 "record %i!\n", line);
 exit (EXIT_FAILURE);
 }
 printf ("%4.4ld%s\n",
 record.number, record.message);
 }
 printf ("\nRetrieve records randomly ...\n\n");
 for (i=1; i<=3; i++) {
AGAIN: ;
 printf ("Display what record? ");
 scanf ("%i", &line);
 newline = getchar();
 if ((line < 1) ||
 (line > 3)) {
 printf ("Record number out of range! ");
 goto AGAIN;
 }
 position = (line - 1) * lrecl;
 error = fseek (unit, position, SEEK_SET);
 if (error != 0) {
 printf ("ERROR! fseek can not "
 "position file!\n");
 exit (EXIT_FAILURE);
 }
 error = fread (&record, lrecl, 1, unit);
 if (error != 1) {

 printf ("ERROR! Read error record "
 "%i!\n", line);
 exit (EXIT_FAILURE);
 }
 printf ("%4.4ld%s\n",
 record.number, record.message);
 }
 fclose (unit);
 exit (EXIT_SUCCESS);
 }

Opening [dam.dat] file ...
Setting logical record length to 64 bytes ...
Enter message #1: "Gone Fishin" said the
Enter message #2: sign in
Enter message #3: the drug store window.
File contains these records ...
0001"Gone Fishin" said the
0002sign in
0003the drug store window.
Retrieve records randomly ...
Display what record? 3
0003the drug store window.
Display what record? 1
0001"Gone Fishin" said the
Display what record? 2
0002sign in

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-12. C format conversion specifier example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 8-12. C format conversion specifier example program. */
 main ()
 {
 int ix = 123;
 long lx = 456;
 unsigned ux = 789;
 float ex = 0.12F;
 float fx = 0.12F;
 float gx = 0.12F;
 double dx = 4.5;
 int cx = 'A';
 char *sx = "abcde";
 int bytes[10];
 printf ("\nEach format displayed without flags ...\n\n");
 printf ("%c%n %d%n %e%n %f%n %g%n %i%n %o%n %s%n %u
%n %x%n\n",
 cx,&bytes[0], ix,&bytes[1], ex,&bytes[2],
 fx,&bytes[3], gx,&bytes[4], ix,&bytes[5],
 ix,&bytes[6], sx,&bytes[7], ux,&bytes[8],
 ix,&bytes[9]);
 printf ("\nTen fields ended at character positions ...\n\n");
 printf ("%i %i %i %i %i %i %i %i %i %i\n",
 bytes[0], bytes[1], bytes[2],
 bytes[3], bytes[4], bytes[5],
 bytes[6], bytes[7], bytes[8],
 bytes[9]);
 printf ("\nEach format displayed with flags ...\n\n");
 printf ("c: [%-15c]\n", cx);
 printf ("d: [%-15d] sign %+d space [% d] zeros %0.5d\n",
 ix, ix, ix, ix);
 printf ("e: [%-15e] sign %+.2e space [% .2e] alt %#.2e\n"
 " zeros %0.2e\n",
 ex, ex, ex, ex, ex);
 printf ("f: [%-15f] sign %+.2f space [% .2f] alt %#.2f "
 "zeros %0.2f\n",
 fx, fx, fx, fx, fx);

 printf ("g: [%-15g] sign %+.2g space [% .2g] alt %#.2g "
 "zeros %0.2g\n",
 gx, gx, gx, gx, gx);
 printf ("i: [%-15i] sign %+i space [% i] zeros %0.5i\n",
 ix, ix, ix, ix, ix);
 printf ("o: [%-15o] zeros %0.5o\n",
 ix, ix);
 printf ("s: [%-15s]\n",
 sx);
 printf ("u: [%-15u] zeros %0.5u\n",
 ux, ux);
 printf ("x: [%-15o] alt %#x zeros %0.5x\n",
 ix, ix, ix);
 printf ("\n");
 return;
 }

Each format displayed without flags ...
A 123 1.200000e-001 0.120000 0.12 123 173 abcde 789 7b
Ten fields ended at character positions ...
1 5 19 28 33 37 41 47 51 54
Each format displayed with flags ...
c: [A]
d: [123] sign +123 space [123] zeros 00123
e: [1.200000e-001] sign +1.20e-001 space [1.20e-001]
alt 1.20e-001
 zeros 1.20e-001
f: [0.120000] sign +0.12 space [0.12] alt 0.12
zeros 0.12
g: [0.12] sign +0.12 space [0.12] alt 0.12
zeros 0.12
i: [123] sign +123 space [123] zeros 00123
o: [173] zeros 00173
s: [abcde]
u: [789] zeros 00789
x: [173] alt 0x7b zeros 0007b

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-13. Fortran G format example.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

c Fig. 8-13. Fortran G format example.
 program main
 real x(6)
 integer d
 character char_zero
 integer ichar_zero
 integer i
 integer j
 character*34 format200
 data char_zero / 1H0 /
 data format200 / '(1H ,1H[,g20.d,3H]
[,g20.de4,1h])' /
 ichar_zero = ichar (char_zero)
 do 400 i = 1, 3, 1
 write (6,100)
 100 format (\ 1H , 'Enter fractional part: ')
 read (5,*) d
 x(1) = 0.01
 x(2) = 0.5
 x(3) = 5.0
 x(4) = 1.0 * (10.0 ** (d-2))
 x(5) = 1.0 * (10.0 ** (d-1))
 x(6) = 1.0 * (10.0 ** (d))
 format200(14:14) = char (ichar_zero + d)
 format200(26:26) = format200(14:14)
 do 300 j = 1, 6, 1
 write (6,format200) x(j), x(j)
 300 continue
 400 continue
 stop
 end

Enter fractional part: 1
[.1E-04] [.1E-0004]
[.5] [.5]
[5.] [5.]

[.1] [.1]
[1.] [1.]
[.1E+02] [.1E+0002]
Enter fractional part: 5
[.10000E-04] [.10000E-0004]
[.50000] [.50000]
[5.0000] [5.0000]
[1000.0] [1000.0]
[10000.] [10000.]
[.10000E+06] [.10000E+0006]
Enter fractional part: 9
[.100000000E-04] [.100000000E-0004]
[.500000000] [.500000000]
[5.00000000] [5.00000000]
[10000000.0] [10000000.0]
[100000000.] [100000000.]
[.100000000E+10] [.100000000E+0010]

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-14. C G format example.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 8-14. C G format example. */
 #include <stdio.h>
 #include <math.h>
 main()
 {
 double x[6];
 int d;
 int i;
 int newline;
 int j;
 for (i=0; i<3; i++) {
 printf ("\nEnter fractional part:\n");
 scanf ("%i", &d);
 newline = getchar();
 x[0] = 0.01;
 x[1] = 0.5;
 x[2] = 5.0;
 x[3] = 1.0 * pow (10.0, (double) (d-2));
 x[4] = 1.0 * pow (10.0, (double) (d-1));
 x[5] = 1.0 * pow (10.0, (double) (d));
 for (j=0; j<6; j++) {
 printf ("[%#20.*g] [%#20.*g]\n",
 d, x[j], d, x[j]);
 }
 }
 return;
 }

Enter fractional part: 1
[0.01] [0.01]
[0.5] [0.5]
[5.] [5.]
[0.1] [0.1]
[1.] [1.]
[1.e+001] [1.e+001]
Enter fractional part: 5

[0.010000] [0.010000]
[0.50000] [0.50000]
[5.0000] [5.0000]
[1000.0] [1000.0]
[10000.] [10000.]
[1.0000e+005] [1.0000e+005]
Enter fractional part: 9
[0.0100000000] [0.0100000000]
[0.500000000] [0.500000000]
[5.00000000] [5.00000000]
[10000000.0] [10000000.0]
[100000000.] [100000000.]
[1.00000000e+009] [1.00000000e+009]

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-15. Fortran line control program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

c Fig. 8-15. Fortran line control program.
 program main
 write (6,1)
 1 format (// 1H , 'Program shows various slew ',
 - 'control Holleriths')
 write (6,2)
 2 format (1H , 'This is the first line on ',
 - 'the initial page.'
 - / 1H , 'The next FORMAT will advance ',
 - 'to a new page.')
 write (6,3)
 3 format (1H1, 'This is the first line on ',
 - 'the second page.')
 write (6,4)
 4 format (1H , '___________s overwritten.')
 write (6,5)
 5 format (1H+, 'This line i')
 write (6,6)
 6 format (1H , 'The next line should appear ',
 - 'after a blank line.')
 write (6,7)
 7 format (1H0, 'The line above should be blank.')
 write (6,8)
 8 format (1H , 'Program shows various slew ',
 - 'control Holleriths' //)
 stop
 end

Program shows various slew control Holleriths
This is the first line on the initial page.
The next FORMAT will advance to a new page.
This is the first line on the second page.
This line is overwritten.
The next line should appear after a blank line.
The line above should be blank.

Program shows various slew control Holleriths

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-16. C line control program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 8-16. C line control program. */
 main (void)
 {
 printf ("\n\nProgram shows various "
 "slew control characters\n");
 printf ("This is the first line "
 "on the initial page.\n"
 "The next PRINTF will "
 "advance to a new page.\n");
 printf ("\fThis is the first line "
 "on the second page.\n");
 printf ("___________s overwritten.\r");
 printf ("This line i\n");
 printf ("The next line should appear "
 "after a blank line.\n");
 printf ("\nThe line above should be blank.\n");
 printf ("Program shows various slew "
 "control characters\n\n");
 return;
 }

Program shows various slew control Holleriths
This is the first line on the initial page.
The next FORMAT will advance to a new page.
This is the first line on the second page.
This line is overwritten.
The next line should appear after a blank line.
The line above should be blank.
Program shows various slew control Holleriths

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 8-17. C emulation of Fortran format statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 8-17. C emulation of Fortran format statement. */
 #include <stdio.h>
 #define format1 printf ("format1:\n")
 #define format2(iarg, farg, carg, narg, barg)\
 printf ("format2: %i %f %s %.*s\n",\
 iarg, farg, carg, narg, barg)
 #define format3(iarg, farg, carg, barg)\
 scanf ("%i %f %s %3c",\
 iarg, farg, carg, barg)
 #define format4(sarg1, sarg2, iarg)\
 printf ("%s %s %i\n", sarg1, sarg2, iarg)
 main ()
 {
 int i = 123;
 float f = 4.5F;
 char *c = "abc";
 char b[3] = { 'D', 'E', 'F' };
 int newline;
 format1;
 format2 (i, f, c, sizeof(b)/sizeof(char), &b[0]);
 format1;
 printf (" Enter new values: ");
 format3 (&i, &f, c, &b[0]);
 newline = getchar();
 format1;
 format2 (i, f, c, sizeof(b)/sizeof(char), &b[0]);
 format1;
 format4 ("format4:", "i =", i);
 return;
 }

format1:
format2: 123 4.500000 abc DEF
format1:
 Enter new values: 678 9.0 xyz UVW
format1:

format2: 678 9.000000 xyz UVW
format1:
format4: i = 678

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 9-1. C preprocessor statements.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 9-1. C preprocessor statements. */
 #define ABC 1
 #define DEF 2
 #define COMPUTER 1
 #define KNOWN
 void main ()
 {
 struct world { char *computer;
 char *compiler;
 float version; } host;
 #if COMPUTER == ABC
 host.computer = "ABC Model D";
 host.compiler = "ANSI";
 host.version = 1.23;
 #elif COMPUTER == DEF
 host.computer = "EFG Model H";
 host.compiler = "K&R";
 host.version = 4.56;
 #else
 host.computer = "Unknown";
 host.compiler = "Unknown";
 host.version = 0.0;
 #endif
 printf ("\nHost is: %s computer"
 "\n %s compiler"
 " (Version %.2f)\n",
 host.computer, host.compiler,
 host.version);
 #if defined KNOWN
 printf ("\nKNOWN is defined.\n");
 #else
 printf ("\nKNOWN is NOT defined.\n");
 #endif
 #undef KNOWN
 #ifndef KNOWN
 printf ("\nKNOWN is no longer defined.\n");

 #else
 printf ("\nKNOWN is still defined.\n");
 #endif
/* #ifndef MISSING
 #error MISSING is NOT defined!
 #endif */
 return;
 }

Host is: ABC Model D computer
 ANSI compiler (Version 1.23)
KNOWN is defined.
KNOWN is no longer defined.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 9-2. C enum data type example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 9-2. C enum data type example program. */
 main()
 {
 enum cardinal_directions { north, south, east, west, d };
 enum compass_rose { ne=10, se=20, sw=30, nw=40, c };
 printf ("\n");
 printf ("directions: %2i %2i %2i %2i d=%2i\n",
 north, south, east, west, d);
 printf ("compass : %2i %2i %2i %2i c=%2i\n",
 ne, se, sw, nw, c);
 return;
 }

directions: 0 1 2 3 d= 4
compass : 10 20 30 40 c=41

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 9-3. C qsort (quick sort) example program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 9-3. C qsort (quick sort) example program. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 int comparisons;
 main ()
 {
 char *names[6] = { "Baker", "Foxtrot", "Able",
 "Echo", "Charlie", "ABLE" };
 int count=6;
 int i;
 int compare (char *one[], char *two[]);
 printf ("UNSORTED");
 for (i=0; i<count; i++) {
 printf (" %s", names[i]);
 }
 printf ("\n\nQSORT activity ...\n\n");
 comparisons = 0;
 qsort ((void *) names, (size_t) count,
 (size_t) sizeof (*names), compare);
 printf ("\nSORTED");
 for (i=0; i<count; i++) {
 printf (" %s", names[i]);
 }
 printf ("\n\n");
 return;
 }
 int compare (char *one[], char *two[])
 {
 int result;
 result = strcmp (*one, *two);
 comparisons += 1;
 printf ("%2d %2d %-7s %-7s\n",
 comparisons, result, *one, *two);
 return result;
 }

UNSORTED Baker Foxtrot Able Echo Charlie ABLE
QSORT activity ...
 1 1 Foxtrot Baker
 2 -1 Able Foxtrot
 3 1 Foxtrot Baker
 4 1 Baker ABLE
 5 -1 Able Baker
 6 1 Echo Baker
 7 -1 Baker Charlie
 8 -1 Baker Echo
 9 1 Baker Able
10 -1 ABLE Able
11 -1 Able Baker
12 1 Able ABLE
13 -1 ABLE Able
14 0 ABLE ABLE
15 -1 Charlie Echo
16 -1 Echo Foxtrot
17 1 Echo Charlie
18 -1 Charlie Echo
19 0 Charlie Charlie
SORTED ABLE Able Baker Charlie Echo Foxtrot

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 9-4. C bsearch (binary search) example.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 9-4. C bsearch (binary search) example. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 struct place { char *state, *region; }
 main (int argc, char *argv[])
 {
 struct place states[] = {
 "Maine", "northeastern",
 "Washington", "northwestern",
 "Arizona", "southwestern",
 "Kansas", "central",
 "Alabama", "southern",
 "Florida", "southeastern",
 "Pennsylvania", "mid-atlantic" };
 int count;
 int i;
 struct place *result;
 int scompare (struct place *one,
 struct place *two);
 int bcompare (char *one,
 struct place *two);
 if (argc <= 1) {
 printf ("\nUSAGE: %s state_1 state_2 "
 "state_i state_n\n", argv[0]);
 exit (EXIT_FAILURE);
 }
 count = sizeof (states) / sizeof (struct place);
 printf ("\nSorting table of %i state-and-region "
 "pairs by state ...\n", count);
 qsort ((void *) states, (size_t) count,
 (size_t) sizeof (struct place), scompare);
 printf ("\nSearching for regional location of %i "
 "states ...\n\n", argc-1);
 for (i=1; i<argc; i++) {
 if ((result = bsearch (

 (void *) argv[i],
 (void *) states,
 (size_t) count,
 (size_t) sizeof (struct place),
 bcompare)
) == NULL)
 printf ("%s is NOT in the state-and-"
 "region table.\n", argv[i]);
 else
 printf ("%s is in the %s region.\n",
 result->state, result->region);
 }
 exit (EXIT_SUCCESS);
 }
 int scompare (struct place *one,
 struct place *two)
 {
 int result;
 result = strcmp (one->state, two->state);
 return result;
 }
 int bcompare (char *one, struct place *two)
 {
 int result;
 result = strcmp (one, two->state);
 return result;
 }

Sorting table of 7 state-and-region pairs by state ...
Searching for regional location of 6 states ...
Maine is in the northeastern region.
Washington is in the northwestern region.
Arizona is in the southwestern region.
Florida is in the southeastern region.
Wherever is NOT in the state-and-region table.
Kansas is in the central region.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 9-5. C random number functions.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 9-5. C random number functions. */
 #include <stdlib.h>
 #include <limits.h>
 main ()
 {
 unsigned int seed;
 int i;
 int stop;
 int random;
 printf ("\nEnter seed: ");
 scanf ("%u", &seed);
 srand (seed);
 printf ("\nSequence initialized with seed "
 "of %u.\n", seed);
 printf ("\nDraw up to %i random integers in range "
 "(0,%ld)\n", INT_MAX, (long)RAND_MAX);
 stop = RAND_MAX / 2;
 printf ("and stop the first time an integer exceeds "
 "%i ...\n\n", stop);
 for (i=1; i<INT_MAX; i++) {
 random = rand();
 printf ("%i ", random);
 if (random > stop)
 break;
 }
 printf ("\n\n%Draw number %i exceeded %i.\n",
 i, stop);
 return;
 }

Enter seed: 3
Sequence initialized with seed of 3.
Draw up to 32767 random integers in range (0,32767)
and stop the first time an integer exceeds 16383 ...
48 7196 9294 9091 7031 23577
Draw number 6 exceeded 16383.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 9-6. C time functions.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 9-6. C time functions. */
 #include <stdio.h>
 #include <stdlib.h>
 #include <time.h>
 main ()
 {
 time_t time_pointer;
 long seconds;
 float ticks;
 float tocks;
 time_t time_begin;
 time_t time_end;
 struct tm *tm_pointer;
 int time_length;
 char time_string[40];
 void tmdisplay (struct tm *tm_pointer);
 printf ("\nDate and time functions ...\n");
 seconds = time (&time_pointer);
 ticks = (float) CLK_TCK;
 printf ("\nCLK_TCK: %f clock ticks per second\n", ticks);
 tocks = (float) clock ();
 printf ("\nCLOCK: processor time so far "
 "%f units = %f seconds\n", tocks, tocks/ticks);
 printf ("\nCTIME: ");
 printf ("%s",ctime (&time_pointer));
 time (&time_begin);
 printf ("\nDIFFTIME: enter anything ");
 getchar();
 time (&time_end);
 printf ("... that took %f seconds\n",
 difftime (time_end, time_begin));
 time (&time_pointer);
 tm_pointer = gmtime (&time_pointer);
 printf ("\nGMTIME: ");
 printf ("%s", asctime (tm_pointer));
 tm_pointer = localtime (&time_pointer);

 printf ("\nLOCALTIME: ");
 printf ("%s", asctime (tm_pointer));
 printf ("\nTIME: %ld seconds since beginning "
 "of 1970\n", seconds);
 time_length = strftime (time_string, 40,
 "%A %d %B %Y %I:%M:%S %p",
 tm_pointer);
 printf ("\nSTRFTIME: (%i bytes) [%s]\n",
 time_length, time_string);
 printf ("\nTM components ...\n");
 tmdisplay (tm_pointer);
 tm_pointer->tm_mon -= 4;
 printf ("\nTM components 4 months prior ...\n");
 mktime (tm_pointer);
 tmdisplay (tm_pointer);
 tocks = (float) clock ();
 printf ("\nCLOCK: processor time so far "
 "%f units = %f seconds\n", tocks, tocks/ticks);
 return;
 }
 void tmdisplay (struct tm *tm_pointer)
 {
 char *months[12] = { "January", "February", "March",
 "April", "May", "June",
 "July", "August", "September",
 "October", "November", "December" };
 char *days[7] = { "Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday",
 "Saturday" };
 char *dst[2] = { "Standard", "Daylight Savings" };
 printf ("%3.2d tm_sec ... seconds 0-59\n",
 tm_pointer->tm_sec);
 printf ("%3.2d tm_min ... minutes 0-59\n",
 tm_pointer->tm_min);
 printf ("%3.2d tm_hour ... hours 0-23\n",
 tm_pointer->tm_hour);
 printf ("%3.2d tm_mday ... day of month 1-31\n",
 tm_pointer->tm_mday);
 printf ("%3.2d tm_mon ... month 0-11 (0=January) %s\n",
 tm_pointer->tm_mon, months[tm_pointer->tm_mon]);

 printf ("%3d tm_year ... years since 1900 A.D.\n",
 tm_pointer->tm_year);
 printf ("%3d tm_wday ... day of weeek 0-6 (0=Sunday) %s\n",
 tm_pointer->tm_wday, days[tm_pointer->tm_wday]);
 printf ("%3.3d tm_yday ... day of year 0-366\n",
 tm_pointer->tm_yday);
 printf ("%3d tm_isdst ... daylight savings time flag: ",
 tm_pointer->tm_isdst);
 if (tm_pointer->tm_isdst < 0)
 printf ("[UNKOWN] ");
 if (tm_pointer->tm_isdst == 0)
 printf ("%s", dst[0]);
 if (tm_pointer->tm_isdst > 0)
 printf ("%s", dst[1]);
 printf (" Time\n");
 printf (" %s", asctime (tm_pointer));
 return;
 }

Date and time functions ...
CLK_TCK: 1000.000000 clock ticks per second
CLOCK: processor time so far 60.000000 units = 0.060000
seconds
CTIME: Thu Nov 29 20:44:58 1990
DIFFTIME: enter anything ... that took 2.000000 seconds
GMTIME: Fri Nov 30 04:45:00 1990
LOCALTIME: Thu Nov 29 20:45:00 1990
TIME: 659940298 seconds since beginning of 1974
STRFTIME: (37 bytes) [Thursday 29 November 1990
08:45:00 PM]
TM components ...
 00 tm_sec ... seconds 0-59
 45 tm_min ... minutes 0-59
 20 tm_hour ... hours 0-23
 29 tm_mday ... day of month 1-31
 10 tm_mon ... month 0-11 (0=January) November
 90 tm_year ... years since 1900 A.D.
 4 tm_wday ... day of weeek 0-6 (0=Sunday) Thursday
332 tm_yday ... day of year 0-366

 0 tm_isdst ... daylight savings time flag: Standard
Time
 Thu Nov 29 20:45:00 1990
TM components 4 months prior ...
 00 tm_sec ... seconds 0-59
 45 tm_min ... minutes 0-59
 20 tm_hour ... hours 0-23
 29 tm_mday ... day of month 1-31
 06 tm_mon ... month 0-11 (0=January) July
 90 tm_year ... years since 1900 A.D.
 0 tm_wday ... day of weeek 0-6 (0=Sunday) Sunday
209 tm_yday ... day of year 0-366
 1 tm_isdst ... daylight savings time flag: Daylight
Savings Time
 Sun Jul 29 20:45:00 1990
CLOCK: processor time so far 2530.000000 units =
2.530000 seconds

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Figure 9-7. C recursive program.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

/* Fig. 9-7. C recursive program. */
 #include <stdio.h>
 #include <stdlib.h>
 int count = 0;
 int MAXIMUM = 100;
 int MINIMUM = 0;
 int number;
 main (int argc, char *argv[])
 {
 int result;
 int guess (int *);
 printf ("\n%s program invoked with %i arguments ...\n",
 argv[0], argc-1);
 if (argc != 2) {
 printf ("ERROR! Usage is %s positive_number!\n",
 argv[0]);
 exit (EXIT_FAILURE);
 }
 number = (int) strtol (argv[1], NULL, 10);
 if ((number < 0) ||
 (number > MAXIMUM)) {
 printf ("ERROR! Number > %i ... too large!\n",
 MAXIMUM);
 exit (EXIT_FAILURE);
 }
 printf ("\nStarting to guess the number between "
 "%i and %i ...\n\n", MINIMUM, MAXIMUM);
 result = MAXIMUM;
 result = guess (&result);
 printf ("\nGuessed the number %i in %i trys.\n",
 result, count);
 return;
 }
 int guess (int *current)
 {
 int local;

 count += 1;
 printf ("Guess #%i is %i\n", count, *current);
 if (*current == number)
 return *current;
 if (*current > number)
 MAXIMUM = *current;
 else
 MINIMUM = *current;
 local = MINIMUM + ((MAXIMUM - MINIMUM) / 2);
 local = guess (&local);
 *current = local;
 return *current;
 }

FIG97.RUN program invoked with 1 arguments ...
Starting to guess the number between 0 and 100 ...
Guess #1 is 100
Guess #2 is 50
Guess #3 is 75
Guess #4 is 87
Guess #5 is 93
Guess #6 is 90
Guess #7 is 91
Guessed the number 91 in 7 trys.

{ewc oshtools.dll, OlsonSoftEWButton, " Return ":back()}

Copyright Notice and Terms

This electronic book, “From Fortran to C” (the “TITLE”) is © Copyright 1995
by James F. Kerrigan (the “Author”), and is fully protected by United States
Copyright laws and international treaty provisions. This TITLE was
produced/published by OmniMedia (the “Publisher”).

Because this electronic book is protected by SoftLock™ software, the
Author hereby gives all others permission to electronically duplicate and
redistribute this TITLE provided that none of the files associated with the TITLE
(see text file ‘for2c.txt’ for a complete list) are omitted and/or altered in any
manner. Some examples of forbidden alterations to this TITLE include the
disabling of the SoftLock feature via any means, the distribution of an electronic
file produced by capturing or extracting any portion of the text, and distributing
to others a printed copy of any portion of the text.

The Author and the Publisher encourage you to distribute this electronic
book far and wide (as outlined in the previous paragraph) so that many others
can enjoy it.

This TITLE, including all files, installation programs, and documentation, is
provided “AS IS”, that is, you use this title at your own risk, without warranty of
any kind. This includes, but is not limited to, defects/errors with the format of
this TITLE as well as defects/errors in the media used to distribute this TITLE to
the supplier and/or purchaser. The Author and the Publisher further disclaims all
implied warranties including, but not limited to, merchantability or fitness for a
particular purpose.

In no event shall the Author, the Publisher, SoftLock Services, Inc., or any
suppliers of this TITLE be liable for any damages whatsoever (including, without
limitation, damages for lost profits, business interruptions, loss of business
information, or any other pecuniary loss) arising from the use of or inability to
use the TITLE, even if the Author, the Publisher, SoftLock, and/or the suppliers of
this TITLE have been advised of the possibility of such damages. Because some
jurisdictions do not allow exclusions or limitations of liability for consequential or
incidental damages, this limitation may not apply to you.

Should you have any further questions about the contents of this section,
please contact OmniMedia.

(Note: Chapters 5 to 7 and Appendices A to C of this TITLE have been
protected by SoftLock™ software. To read these chapters requires the one-time
purchase from SoftLock of a password, unique to your computer. Details for
purchasing the SoftLock password are given in the window which appears when
you attempt to read any of the protected chapters. You will find the purchase
procedure to be very easy and convenient.)

{ewc oshtools.dll, OlsonSoftEWButton, " Next Topic ":next()}

{ewc oshtools.dll, OlsonSoftEWPopupButton, " About OmniMedia
":omnimedia}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to the Table of Contents
":toc}

Book Abstract

Experienced programmers struggle with learning a new programming
language. It is frustrating to realize that a task could be done in seconds
in the old programming language but takes minutes or even hours to code
in the new language. This book is written for the experienced Fortran
programmer to learn the ANSI C programming language.

This book is structured as both an introduction and a reference to
help the Fortran-to-C transition. It begins with a brief history of both
languages. It then moves on to elementary comparisons between the two
languages (i.e., character set, basic statement syntax, data types,
operators, and program/subprogram components). This preliminary
information lays the groundwork for a structured concordance to C for
Fortran. Here, a separate section is presented corresponding to each of
the 47 Fortran keywords – ASSIGN, BACKSPACE, BLOCKDATA, ...
STOP, SUBROUTINE, WRITE – whose C language counterparts are
described and the same working program is given in both Fortran and C.
This concordance is the heart of the book. It is followed by chapters
covering arrays, interprogram communication, input/output to terminals and
files, and C functions that provide capabilities not found in Fortran. Lastly,
appendices provide lists of C compilers, Fortran compilers, Fortran-to-C
translation tools, and standard publications that pertain to Fortran, C and
the transition between the two.

The book is written from a very practical standpoint. Each aspect of
the Fortran programming language is explored and the specific, concrete C
language counterparts are identified. Furthermore, most comparisons are
illustrated by example programs in both Fortran and C.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Topic ":next()}

About the Author

Jim Kerrigan works as a computer consultant. He has been involved
with Fortran in both research and commercial environments for twenty-five
years and with C for over five years. He has used both languages to
create programs ranging from socioeconomic forecasting to data parallel
algorithms and from a project management package through operating
system monitors to C language extensions to aging Fortran packages.
Before working for computer companies (first Prime, then Sequent, now
Hewlett-Packard), Jim received a BA in Archaeology from Temple
University and an MA in Regional Science from the University of
Pennsylvania. He is the author of another book, Migrating to Fortran 90,
published by O’Reilly & Associates.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Topic ":next()}

About This Book and Revision History

This title, From Fortran to C by James F. Kerrigan (the “author”),
originally appeared as Windcrest #3661 published by TAB – McGraw-Hill of
Blue Ridge Summit, Pennsylvania. That firm transferred publishing rights
and the copyright back to the author on 03 August 1994. The author
retains the copyright to the text as well as this electronic book rendering of
the text.

Regarding revision history, this is the first electronic book issuance of
this title. Thus, there is no prior version. Updated revisions may
subsequently be issued; check with OmniMedia or its archive for updated
information.

Note that Chapters 5 to 7 and Appendices A to C are SoftLocked.
For more information about SoftLock as used in this electronic book,
consult the window that comes up whenever attempting to read a
SoftLocked section without a valid password. To get more information
about the SoftLock company, execute the DOS file softlock.exe included
with this electronic book.

OmniMedia uses Olson Software Help Tools (“OSHTools”) version 1.2
to enhance this electronic book. For more information on OSHTools,
contact Stefan Olson at Olson Software, 4 Anaru Place, Palmerston North,
New Zealand (stefan@olson.manawatu.gen.nz).

{ewc oshtools.dll, OlsonSoftEWPopupButton, " About OmniMedia
":omnimedia}
{ewc oshtools.dll, OlsonSoftEWButton, " Next Topic ":next()}

Dedication

Dedicated to Julia, Elvina, and Rae.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Topic ":next()}

Acknowledgments

Nearly two years have passed since the original plans for this book
were laid. During this period, I have enjoyed direct and indirect support
from many friends and professional colleagues. At times, this support was
specific to the topic of this book. More often, it was an unspoken
understanding that blank looks on my face simply meant that I had taken a
brief “mental break” from the current discussion and had started thinking
about some aspect of Fortran or C. With this project complete, there is
hope that I will return to giving such friends and colleagues my undivided
attention.

At Tab Books, I thank Kimberlee Burdick, Lisa Manahan, and Julie
Ritter for their assistance over the duration of this project. Also, I
appreciate the confidence in this project shown by Steve Fitzgerald and
Robert Ostrander. I am especially indebted to Stephen Moore for his initial
interest in the subject, his support during the proposal through delivery
phases, and his guidance through the publishing process. It is unlikely
that this text would ever have appeared were it not for Stephen’s help.

Without my family’s assistance, I am absolutely certain that this book
would not exist. My sons – Ian, Phillip, and Evan – were very considerate
of the amount of time I diverted to writing.

Finally, I am in debt to my wife, Ellen. She has shown so much
patience and given so much support that I’ll be hard pressed to ever be
able to repay her.

ADDENDUM TO ELECTRONIC VERSION
Almost at the same time that the printed version of this book was

declared “out of print”, I read Jon Noring’s posting to the
misc.books.technical Usenet/Internet newsgroup describing his
company’s (OmniMedia) vision of publishing in an electronic hypertext and
multimedia format. I contacted Jon in mid-July, 1994, he and I discussed
the project over the succeeding weeks, and both decided to go forward in
mid-September, 1994. Due to other commitments, the project lapsed until
the first week of December, 1994. At that time, I started the work of
marking up the original ASCII text files finishing on New Year’s Day. Jon
completed the WinHelp version in March, 1995. The publication date for
this electronic version is April 10, 1995.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Topic ":next()}

Introduction

At first, experienced programmers struggle with the acquisition of a
new programming language. It is frustrating to know that some task could
be accomplished in seconds with the old language and will take minutes (or
possibly) hours) to code in new language. This book is for experienced
Fortran programmers, to help them gain an understanding of the C
programming language and to facilitate that process.

Learning C may either be a goal in its own right, preparation for
development on a new hardware platform, or required to take advantage of
an interface to external programs. C is rapidly becoming the language of
choice as the first language learned by new programmers, mainly because
of the deployment and availability of hardware platforms on which C is a
native element. In addition, many applications software packages in the
areas of data base management, graphics, and screen management are
delivered with a programming language interface defined for C and, often,
no other language. These three areas are reason enough to learn C.

This book is structured both as an introduction and as a reference to
help in the transition from Fortran to C. Chapter 1 outlines the history of
the two languages and attempts to explain the circumstances behind a
growing movement from Fortran to C. Chapters 2, 3, and 4 introduce C
language specifications with detailed comparison to their Fortran
counterparts. In each of these chapters, many C languages features are
demonstrated by a complete Fortran program followed by the
corresponding complete C program. These three chapters form a
background understanding of what C “looks like” and how a C program is
structured. These chapters can be read in order.

Chapter 5 is a reference work. In it, a separate section is dedicated
to each Fortran statement with text and example programs explaining that
statement’s counterpart(s) in C. Each section in the chapter begins with a
few lines summarizing the Fortran syntax of the statement, a list of the
primary C language features directly associated with the Fortran statement,
and a list of additional C statements, operators, and functions used in that
section but related to the Fortran statement. Every section in Chapter 5
has at least one full Fortran program that uses the particular Fortran
statement, a list of the output of that Fortran program, and a full C program
that does the same thing as the Fortran program. Both programs’ logic,
features, and special twists are explained in the text. Chapter 5 was

written in this fashion so that the experienced Fortran programmer could
quickly turn to information specific to one Fortran statement and learn
about C language counterparts to that statement. Since this chapter is
written in a reference style, it can prove difficult to be read straight through.

Chapter 6 covers how both languages handle arrays. Chapter 7
reviews several issues of interprogram communications from the
perspective of the software development process. Chapter 8 presents
terminal, sequential file, and direct access file input/output operations.
Chapter 9 is the “miscellaneous” category and develops half a dozen
features of C that are not present in the Fortran programming language.
Chapter 10 summarizes the book and also discusses the new Fortran 90
language specification.

Four appendices list C compilers, Fortran compilers, Fortran-to-C
translations tools, and standard published references for both languages.
Finally, an index helps the reader navigate through the book tracking down
references to specific Fortran and C features.

Annually, many books are published with Fortran as the primary
subject and others with C as the main focus. Few, however, deal at all
with both languages in any way; and fewer still, in any substantive way.
This book deals squarely with how these two languages relate to each
other in form, content, and style. Hopefully, this book can help reduce the
time and effort it takes for the experienced Fortran programmer to acquire a
knowledge of the C programming language.

{ewc oshtools.dll, OlsonSoftEWButton, " Go to Chapter 1 ":next()}

Chapter 1: Why C?

{ewc oshtools.dll, OlsonSoftEWPopupButton, " Important Notes on
Reading This Book ":important}

Traditional roles for the Fortran and C programming languages are
changing. Created in the mid-1950s, Fortran has been the language of
choice for the scientific and engineering programming community. Fifteen
years later, C was developed as a system programming language.
Despite the large body of source code written in either language that
represent traditional usage, counter-examples such as an operating system
in Fortran or a collection of mathematical functions coded in C do exist.
Over the last 20 years, utilization of Fortran and C have merged somewhat
as both serve as the foundation for an increasing number of commercial
application programs. In the 1980s, C use has surpassed that of Fortran
for the reasons that it is available on a wide range of homogeneous
hardware platforms and is the predominant computer language learned by
new programmers. As programmers gain experience on these various
computer systems, one can reasonably expect that a significant fraction of
new software development will be in C. Both trends lead to the increasing
use of the C programming language in situations traditionally associated
with Fortran.

Historically, Fortran was developed as a programming language for
the IBM 700 series of scientific calculators.† The goal of the original
project was to produce a compiler that could generate runfiles that execute
at least as fast as runfiles created from hand-coded assembly language.
The project began in late 1953, produced a language specification
document in November, 1954, a programmer’s reference manual in
October, 1956, and was delivered to customers in April, 1957.† A year
later, Fortran II was delivered with a major new feature of being able to
manage separately compiled subroutines. In the winter of 1958-1959,
Fortran III was delivered and included the “A” format as a new feature.
Fortran IV became the basis of the American National Standards Institute’s
efforts to develop a standard for the Fortran programming language. The
“Fortran 66” standard resulting from that four year project was finally
approved in March, 1966. Work on the next ANSI standard, “Fortran 77”,
started in 1970 and the final report was approved in April, 1978.
Significant language features introduced in “Fortran 77” were the character

data type, user-specified lower and upper bounds for array dimensions,
arithmetic expressions allowed in statements where the previous standard
only sanctioned constants, the if-then-else control construct, list-directed
input and output, and numerous file related enhancements.†

After nine years of work, a draft for a new standard, “Fortran 90”, was
finished in May, 1987. Fortran 90 has replaced Fortran 77 as an
international standard. It was originally proposed as a “companion
standard” to Fortran 77 by ANSI in the United States, but recently
(November, 1994) ANSI proposed to withdraw the old Fortran 77 standard
and have Fortran 90 stand alone as the only Fortran standard. Fortran 90
includes features to provide for user-specified numerical precision, array
operators, user-defined data types, free-form source format including 132-
character statements with a new method to indicate comments, and
dynamic storage allocation.† Each “standard” Fortran represents efforts to
consolidate machine-specific dialects of the language and to develop and
guide the implementation of new features.

Historically, C was developed at Bell Laboratories as a system
programming language to implement a new operating system on a DEC
PDP-11 minicomputer. The project began in 1972 and a language
description was published six years later.† C is a compact, terse
programming language that includes data types, data operations, the ability
(and need) to manipulate addresses, and an uncomplicated but completely
adequate set of flow-control constructions. In 1983, the American National
Standards Institute formed a committee to produce a C programming
language standard. This “ANSI C” standard was completed in May, 1988,
and was approved in March, 1989. Major new features of this standard
are function prototyping, a more fully defined library of support functions,
program locales (i.e., support for local practices such as date and time
presentation, monetary values, etc.), preprocessing compiler directives,
and an ability to create and manage “characters” that are too large to store
in one byte.

In parallel to the development of this standard, the original language
description has been revised and re-issued.† Vendors of the several C
compilers for microcomputers have already brought “ANSI C” compilers to
market. Throughout its history, C has been closely associated with the
UNIX operating system, with system programming in general, and with the
challenge of writing “portable” code that can be easily transferred from
whichever computer was used in the development to any one of many
target computers.

Why C? In a survey of 57 out of the top 200 software companies,
over 20 companies are developing in C and only 3 are developing in
Fortran.† On UNIX-based computer systems and workstations installed in
the engineering community, the ratio of existing Fortran code to C code
might be as high as 100-to-1, but new packages and programs are being
developed in C. Table 1-1† shows the results of an informal survey of
published books on Fortran and on C. Fully three-quarters of the books
are specific to the language rather than to any discipline. The remaining
titles are distributed among computer graphics, personal computer
implementations, science and engineering disciplines, and comparisons to
other computer languages. A fifth of the Fortran titles cover science and
engineering subjects but a significant number of C books are published
covering computer graphics and science and engineering topics. C is
positioned to become the programming language of choice for new
software in the traditional engineering and scientific role traditionally
associated with Fortran.

Experienced Fortran programmers have served the scientific and
engineering end-user community for many years. They have developed a
wide range of software packages including portions of computer operating
systems, programs designed to calculate the value of specialized
mathematical formulæ, graphic display libraries, etc. The skill gained by
the programmers who designed, wrote, and maintain such source code has
two components. First, they acquired an intimate knowledge of the
industry for which the programs were created. Second, when
programming, they exercised a full understanding of the Fortran language.
To preserve the value of such programmer’s knowledge of their respective
industrial applications, this book allows such Fortran programmers to
continue to be productive but employ a different programming language, C.

References Cited

Backus, John W. “The History of FORTRAN I, II, and III.” 1978 article in
History of Programming Languages, edited by Richard L. Wexelblat, pp.
25-74. New York: Academic Press, Inc., 1981.

Brainerd, Walter S. “Fortran 77.” Communications of the Association
for Computing Machinery, Vol. 21, No. 10 (October 1978), pp. 806-820.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. 228 pages. Englewood Cliffs: Prentice-Hall, Inc., 1978.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. 272 pages. Englewood Cliffs: Prentice-Hall, Inc., 1988.

Kerrigan, James F. Migrating to Fortran 90. 361 pages. Sebastopol,
California: O’Reilly & Associates, Inc., 1993.

Nemeth, Alan. “Interview with Bill Poduska.” UNIX Review, Vol. 5, No.
12 (December 1987), pp. 64-74.

Perlis, Alan J. “The American Side of the Development of ALGOL.” 1978
article in History of Programming Languages, edited by Richard L.
Wexelblat, pp. 75-91. New York: Academic Press, Inc., 1981.

Rinaldi, Damian. “Ceding Territory to UNIX(s), Aiming Software at Niches.”
Software Magazine, Vol. 8, No. 14 (November 1988), pp. 21-23.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Backus, John W. “The History of FORTRAN I, II, and III.” 1978 article in History
of Programming Languages, edited by Richard L. Wexelblat, pp. 25-74. New
York: Academic Press, Inc., 1981.

Brainerd, Walter S. “Fortran 77.” Communications of the Association for
Computing Machinery, Vol. 21, No. 10 (October 1978), pp. 806-820.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language.
228 pages. Englewood Cliffs: Prentice-Hall, Inc., 1978.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language.
272 pages. Englewood Cliffs: Prentice-Hall, Inc., 1988.

Kerrigan, James F. Migrating to Fortran 90. 361 pages. Sebastopol, California:
O’Reilly & Associates, Inc., 1993.

Nemeth, Alan. “Interview with Bill Poduska.” UNIX Review, Vol. 5, No. 12
(December 1987), pp. 64-74.

Perlis, Alan J. “The American Side of the Development of ALGOL.” 1978 article
in History of Programming Languages, edited by Richard L. Wexelblat, pp. 75-91.
New York: Academic Press, Inc., 1981.

Rinaldi, Damian. “Ceding Territory to UNIX(s), Aiming Software at Niches.”
Software Magazine, Vol. 8, No. 14 (November 1988), pp. 21-23.

Chapter 2: Program Structure

Fundamental to every programming language is a set of
“housekeeping” rules. Certain rules govern which characters are
permitted to appear in source code, others identify legal syntax for a line of
source code, and a final group specify how to delimit subprograms from a
main program. These rules transcend elements of “programming style”
that may be in vogue for any language. Compilers detecting violations of
these rules will flag errors and might stop processing the source code file
should the problem be especially severe. Fortran and C have surprisingly
similar sets of housekeeping rules.

CHARACTER SET
With one exception, the entire Fortran character set is available in the

C character set. The character set for Fortran and C include the twenty-
six capital letters of the English alphabet and the ten digits. While C
formally includes the twenty-six lowercase letters of the English alphabet,
such lowercase letters, although not recognized by the ANSI standard for
Fortran, are commonly supported by modern Fortran compilers. In other
words, many Fortran compilers will accept source code containing
statements written with lowercase letters as if written with uppercase
letters. However, no Fortran compiler in compliance with the ANSI
standard would distinguish variables names, function names, subroutine
names, and such on the basis of case: variable X is identical to variable
x. Uppercase versus lowercase is a significant issue in C: variable X is
completely different from variable x.

Both languages accept the following twelve “special” characters:

space = + - * / () , . ' :

C goes on to define the following eighteen “graphics” characters:

! " # % & ; < > ? [\] ^ _ { | } ~

Finally, C also represents seven formatting commands by these
character pairs:

/a alert ... usually the terminal “bell”
/b backspace
/f form feed

/n new line
/r carriage return
/t horizontal tab
/v vertical tab

The only character defined by Fortran but not by C as an element of
the character set appropriate for source code is the dollar sign. However,
the dollar sign has no special significance in the ANSI standard and is not a
required element in any part of Fortran syntax. Still, it is often used in
extensions to the language to signify system-specific library names,
compiler directives, or unique formatting commands.

SOURCE CODE SYNTAX
Position has significance in a line of Fortran source code. The initial

line of a Fortran statement has blanks or a statement number in columns
one through five, a blank or a zero in column six, Fortran statements
beginning in column seven, and terminates at the 72nd column. A Fortran
statement can be continued from the initial line on up to 19 continuation
lines. A continuation line has blanks in the first five columns, any legal
character except a blank or a zero in column six, Fortran statements
beginning in column seven, and terminates at the 72nd column. With a
total of 20 lines–initial line plus continuations–a single Fortran statement is
limited by the ANSI standard to a maximum of 1,320 characters.

Comment lines are all blank or have the letter C or the character *
in the first column with additional text, if any, in columns two to the end of
the line. Comment lines can appear anywhere in a program unit from the
beginning of the source code file until the end statement. ANSI standard
compliant Fortran compilers must accept comment lines placed before the
program, block data, function, or subroutine statement but
are not required to accept comment lines placed after the end statement.

In contrast, position has no significance in a line of C source code.
Instead, virtually every C statement is finished with a semicolon. Where
Fortran terminates scanning source code lines at column 72, C statements
are scanned until the semi-colon character appears. New C programmers
quite often forget about the terminal semicolon.

Because a C statement’s length is determined by the terminal
semicolon instead of by the column number, a single C statement can span
multiple source lines. To continue a line of C source code over multiple
lines, simply end the initial line with the backslash character or divide at the

end of a token or argument, such as

 main()
 {
 char *string;
 string = "This short line seems"\
 " very, very long.";
/* Display as: This short line seems very, very long. */
 printf ("%s\n",
 string);
 return;
 }

C limits a logical line of source code to a total of 509 characters. In
the previous C example, the two physical lines of source code that define
the variable string comprise one logical line of source and are subject to the
limit of 509 characters. Similarly, the two physical lines of source code that
invoke the printf function are considered to be one logical line of source
and also must be shorter than 509 characters. Comments in C start with
the two-character token /* and end with the two-character token */. This
definition permits several comment styles such as

/* This is a single line comment.*/

 i = 123; /* This comment follows source code. */

/*
/* This comment has multiple "open-comment"
/* delimiters, but only one "close-comment". */

/* This is a standard, multiple line
 comment with one open and one close
 comment delimiter. */

/* Lastly, this is an alternative style for the
 * multiple line comment with one open and one close
 * comment delimiter.

 */

Comments may appear anywhere in the source code file. However,
a comment may not appear within the delimiters of another comment. For
example, an initial comment written as

/* Beginning of initial comment.
 End of initial comment. */

cannot be augmented with a secondary comment as

/* Beginning of initial comment.
/* ILLEGAL ... added comment ... ILLEGAL */
 End of initial comment. */

because the added comment becomes embedded within the limits of the
initial comment. This restriction can be troublesome as a programmer is
apt to try to “comment-out” a section of code that already contains
comments. In doing so, old comment lines may then be contained within
the delimiters for the new comment leading to a compilation failure because
C compilers do not allow embedded comments.

PROGRAM AND PROCEDURES
In both Fortran and C, a program consists of a single main program

and one or more procedures. Procedures in Fortran can be block data
subprograms, entry points into subprograms, external functions, intrinsic
functions, statement functions, or subroutines. Procedures in C can be
intrinsic functions, library functions, macros, or user-written functions. In
both languages, all source code for a program can be presented to the
compiler in one file starting with the main program and followed by other
procedures in any order. Both languages permit the source code for a
program to be prepared with one procedure per file, compiled separately,
and then rejoined into an executable unit with a “link/loader” provided by
the host operating system.

As a device in explaining program structure, Figure 2-1† is a trivial
Fortran program that uses a subroutine, a function, and a statement
function. Figure 2-2† is the C counterpart to Figure 2-1.† In both
programs, variables are named according to this convention: first letter
signifies Fortran or C; second letter indicates if the variable is used in a
function, a subroutine, or a statement function; the next part indicates if
the variable is input or output to the appropriate subprogram; and the last

letter indicates if the variable is a variable or a constant. Both program
produce output (see Figure 2-3†) that is a running commentary of the
passage of control as well as the values of constants, equations, and
variables.

The Main Program
In a single executable file, there is one and only one “main” program.

Fortran allows the programmer to name the main program through the use
of the program statement. C is more restrictive in that the main program
starts with the main statement and the main program cannot be given a
name by the programmer. A major difference between Fortran and C
regarding the main program is that in C a main program can “take”
arguments from the environment that invoked it, while a main program in
Fortran can’t. These arguments could be the value of constants to use in
the program, the names of files to operate on, a keyword or value to control
the level of debug and trace information generated by the program, etc. In
the example in Figure 2-2,† the void qualifier in the main statement
indicates that this particular program takes no arguments. C main
program arguments are described in greater detail in the entry for the
Fortran program† statement in Chapter 5.

Block Data and Entry
C has no counterpart to Fortran block data subprograms or entry

points into subprograms. Fortran defines a block data subprogram as a
special means to initialize variables and arrays in common blocks.
Because C has no sequel to the Fortran common block, it therefore needs
no special means to initialize such variables and consequently has no
structure to equal the exact functionality of a Fortran block data
subprogram. This does not mean that C has no facility to establish initial
values for variables used throughout an entire C program, but only that it
has no special structure like a Fortran block data subprogram. As an
example, this Fortran program uses a block data subprogram to initialize a
single variable in common whose value is then displayed in a subprogram:

 program main
 common / area / fvar
 call subprogram
 stop
 end
 subroutine subprogram

 common / area / fvar
c Display as: Variable = 4.5
 write (6,1) fvar
 1 format (1H , 'Variable = ', f3.1)
 return
 end
 block data initialize
 common / area / fvar
 data fvar / 4.5 /
 end
The C counterpart is

 #define cvar 4.5
 main ()
 {
 void subprogram ();
 subprogram();
 return;
 }
 void subprogram ()
 {
/* Display as: Variable = 4.5 */
 printf ("Variable = %3.1f\n", cvar);
 return;
 }

Since the variable cvar was initialized before the main statement, its
value – 4.5 – is available to any subprogram throughout the C example
program.

C has no counterpart to the Fortran entry statement. Each C
subprogram has one and only one entry point. With significant
programming effort, a Fortran “entry-like” scheme could be devised in C
using non-local transfers of control statements (i.e., the longjmp library
function and setjmp macro) or creating new routines for each entry point as
is done in the Fortran entry† statement section of Chapter 5. Either
construct could prove difficult to debug and/or maintain and might not be as
valuable in use as to justify preserving in new or translated C code.

Functions and Subroutines

Fortran external functions and subroutines correspond to C user-
written function. A Fortran external function has as its counterpart the C
function that returns a value to the calling procedure. That value is
associated with the name of the function. A Fortran subroutine has as its
counterpart the C function that does not return a value to the calling
procedure. In the example program (Figures 2-1† and 2-2†), the function
func takes two arguments, adds them, and returns the result to the calling
program as the value of the function. Neither input arguments are
changed within the function named func. In the example (Figures 2-1†
and 2-2†), the subprogram rout takes three arguments. The first two
arguments provide input to subprogram rout and the third and final
argument returns the output of subprogram rout to the calling program.
Neither input arguments are changed but the output argument – xroutv – is
modified in the subprogram rout.

Statement Functions
Fortran statement functions correspond to C macros. A C macro is

defined early in a program and that every time it appears in the program, its
value is substituted at that point. C’s mechanism to establish a macro is
the #define statement and it can serve various purposes. In Figure 2-2,†
the C function sfun is specified in the first line of the source code in a
#define function.

Statement functions are treated again in greater detail in Chapter 5.†

Intrinsic Functions
Fortran provides around forty intrinsic functions, the majority of which

have a mathematical nature and the remainder being character-oriented.
C also has a set of intrinsic functions that match most of those from
Fortran. Table 2-1† shows the correspondence between Fortran intrinsic
functions and C functions. In some cases, the C counterpart to a Fortran
intrinsic function is a formal C intrinsic function; in other cases, the C
counterpart is formally a C library function. Because the C library is an
integral part of ANSI standard C, the distinction between a C intrinsic
versus a C library function is not a major issue. Fortran functions dealing
with the complex numbers are not listed in Table 2-1† because C has no
counterpart to Fortran’s complex numbers.
Most Fortran mathematical intrinsic functions are defined for real numbers
and for double precision numbers. C defines its corresponding functions
only for double precision numbers. This difference can easily be

overcome by “casting” real numbers in C to double precision when the
intrinsic function is invoked. For example, the following Fortran program
uses type-specific intrinsic functions to determine the absolute value of
Fortran double precision and single precision variables:

 program main
 double precision fdx
 real frx
 fdx = -1.23d0
 frx = -4.56
c Display as: 1.23 4.56
 write (6,1) dabs (fdx), abs (frx)
 1 format (1H , f4.2, 1x, f4.2)
 stop
 end
The identical code in C is as follows:

 #include <math.h>
 main ()
 {
 double cdx;
 float crx;
 cdx = -1.23;
 crx = -4.56F;
/* Display as: 1.23 4.56 */
 printf ("%4.2f %4.2f\n",fabs(cdx),fabs((double)crx));
 return;
 }

It uses the type-specific absolute value intrinsic function fabs for the double
variable and, after “casting” the float variable to a type with greater
precision with the prefix (double), also uses fabs for the absolute value of
the float variable.

This C example introduces the #include programming device. It
instructs the C compiler to include the file named in the #include statement
at the point in the C program where the #include statement appears. The
math.h file used in this C example is defined as a part of the ANSI standard
and is supplied with each C compiler. It contains formal declarations for
each of the C mathematical library functions, definitions for mathematical
domain and range error codes, and the value to be returned by a C

mathematical library function if the result exceeds the capacity of C variable
of data type double. There are several such “header” files defined as part
of the ANSI standard for C. A C programmer can create a private
collection of variable definitions, user-written functions, error handling
routines, etc., and have such files incorporated into programs with the
#include statement. A file named in an #include statement may itself
incorporate a second #include file and this form of “nesting” can extend to a
depth of eight files. The concept of including a source file into another
source file with the #include statement is covered in detail in Chapter 7.†

There are four exceptions to the otherwise straightforward
comparison of Fortran intrinsic functions to their C counterparts:
remaindering, location of a substring, lexical comparison of strings, and
length of a character entity. Fortran computes remainders using the type-
specific modulus functions dmod and mod as

 program main
 double precision fdx
 integer fix
 fdx = 11.0d0
 fix = 22
c Display as: 1.0 2
 write (6,1) dmod (fdx,10), mod (fix,20)
 1 format (1H , f3.1, 1x, i1)
 stop
 end

C provides a library function, fmod, that behaves exactly like the
Fortran dmod intrinsic function, such as

 #include <math.h>
 main ()
 {
 double cdx = 11.0;
 int cix = 22;
 cdx = fmod (cdx, 10.0);
 cix = cix % 20;
/* Display as: 1.0 2 */
 printf ("%1.1f %d\n", cdx, cix);
 return;
 }

but uses a remainder operator – the percent sign – to compute the
remainder for integers. For remaindering, the only difference between the
methods established in Fortran and those in C is whether an intrinsic
function, a library function, or an operator is used depending on the data
type of the variable.

Secondly, Fortran provides an intrinsic function to determine the
location of a substring within another string as

 program main
 character*20 fca
 character*6 fcb
 fca = 'The first, #1 string'
 fcb = 'string'
c Display as: 15
 write (6,1) index (fca, fcb)
 1 format (1H , i2)
 stop
 end
The Fortran intrinsic function index returns the character position in the
first string where the second string begins. In the example, the characters
in the Fortran variable fcb occur in the Fortran variable fca starting in
the 15th character position. The C version of this example includes
several new programming constructs, such as

 #include <stddef.h>
 #include <string.h>
 main ()
 {
 char *cca = "The first, #1 string";
 char *ccb = "string";
 char *ccc;
 size_t cid = 0;
 if ((ccc = strstr (cca, ccb)) != NULL)
 cid = (ccc - cca) + 1;
/* Display as: 15 */
 printf ("%d\n", cid);
 return;
 }

Character strings in C are often referenced by their memory address
in the host computer system. In the example, the value of the entity
referenced by *cca is the memory address at which the literal “The first, #1
string” is stored. The entity *ccb is described as a pointer to the character
variable ccb. The value of the pointer is the memory address at which the
value of the variable ccb resides. C library function strstr determines the
memory address at which the literal in ccb can be found in the string
named by cca and returns the result as a pointer to the character variable
ccc.

In the example, ccc marks the memory address of the beginning of
matching characters between string cca and ccb. Likewise, cca marks the
beginning address of the string cca. Subtracting the address at which the
match begins from the address at which the string begins gives the
character position in cca where the two strings cca and ccb start to be the
same. In the example, if no match is found, the variable cid would remain
zero. If a match is found, the C character position of the match is
computed by evaluating the difference in two memory addresses. The
variable cid is declared as a special data type, size_t, which is defined to
be “large enough” to hold the difference between the smallest and largest
possible memory address on the host computer system. The C character
position differs from Fortran by one because the initial position in a C string
is zero, whereas the initial position in a Fortran string is one. Uses of
pointers, pointer arithmetic, and differences between Fortran and C array
and string implementations are further described in Chapter 6.†

A third area of difference is in the lexical comparison of strings. Both
Fortran and C provide means to determine how two strings stand in
alphabetical relation to each other. The two example programs that follow
produce these four lines of output:

aaa LLE aaa
aaa LGE aaa
aaa LLT zzz
zzz LGT aaa
Fortran provides this facility in four lexical relational operators as

 program main
 character*3 fca, fcb, fcc
 fca = 'aaa'
 fcb = fca

 fcc = 'zzz'
 if (lle (fca, fcb)) write (6,1) fca, fcb
 1 format (1H , a3, ' LLE ', a3)
 if (lge (fca, fcb)) write (6,2) fca, fcb
 2 format (1H , a3, ' LGE ', a3)
 if (llt (fca, fcc)) write (6,3) fca, fcc
 3 format (1H , a3, ' LLT ', a3)
 if (lgt (fcc, fcb)) write (6,4) fcc, fcb
 4 format (1H , a3, ' LGT ', a3)
 stop
 end

C combines the functionality of the four Fortran lexical relational
operators into one library function as

 #include <string.h>
 main ()
 {
 char *cca = "aaa";
 char *ccb;
 char *ccc = "zzz";
 size_t n = 3;
 ccb = cca;
 if ((strncmp (cca, ccb, n)) <= 0)
 printf ("%s LLE %s\n", cca, ccb);
 if ((strncmp (cca, ccb, n)) >= 0)
 printf ("%s LGE %s\n", cca, ccb);
 if ((strncmp (cca, ccc, n)) < 0)
 printf ("%s LLT %s\n", cca, ccc);
 if ((strncmp (ccc, ccb, n)) > 0)
 printf ("%s LGT %s\n", ccc, ccb);
 return;
 }

The third argument, n, in the strncmp library function limits the
number of bytes to be compared. If n is less than he length of the string to
be searched, then only the first n characters would be examined. If n is
larger than the length of the string to be searched, then the examination
would terminate at the end of the string to be searched.

Finally, the fourth area of significant differences between Fortran

intrinsic functions and their C counterparts is in the area of determining the
length of a character variable. Fortran provides the intrinsic function len
as

 program main
 character*20 fca
c Display as: 20
 write (6,1) len (fca)
 1 format (1H , i2)
 stop
 end
The C version is

 main ()
 {
 char cca[20];
/* Display as: 20 */
 printf ("%d\n", sizeof (cca));
 return;
 }

and uses the C library function sizeof in a manner almost exactly like
Fortran’s len intrinsic function.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 3: Data Types

Most Fortran data types have direct counterparts in the C
programming language. Both languages provide character storage,
several integer valued data types, and floating point representation.
Neither complex or logical Fortran data types directly appear in the C
programming language. C allows certain data type to be qualified, which
provides more selectivity than Fortran in controlling the numerical range
and storage allocation of variables. A correspondence of Fortran and C
data types is shown in Table 3-1.†

DATA TYPE DECLARATIONS
Fortran and C variables inherit a particular data type either through

explicit declarations or implicit assignment. The symbolic name of a
Fortran variable is from one to six characters in length, starts with a letter,
and can contain a combination of digits and either upper- or lowercase
letters where case is not significant. C variable names are from one to 31
characters in length, start with a letter, and can contain a combination of
digits, the underscore character, and a combination of upper- or lowercase
letters where case is significant. By default, Fortran variables that start
with any of the letters I through N are assigned an integer data type;
otherwise, variables are assigned a real data type. In using the initial letter
of a variable name to denote a particular data type, a Fortran variable does
not have to be declared before it is used. Regardless of the initial letter of
name of a variable, the Fortran statements character, integer, or
real can be used to explicitly state the data type of a variable. The data
type of a C variable must be declared before it is used. This requirement
to declare the data type of all C variables is very different from Fortran,
even though explicitly declaring a data type for all Fortran variables is good
programming practice. Through implicit and explicit type declarations,
both Fortran and C provide means to specify and control data storage.

Character Data Type
Fortran and C have similar data types to represent character data. C

allows the character data type to be qualified as signed or unsigned.
Fortran character data correspond to C’s char or unsigned char character
data. That is, all printable characters are mapped into a numerical range
from zero to 127 such as is returned by Fortran’s ichar function. In
Fortran, a single character variable is declared, initialized, and displayed as

follows:

 character fa
 fa = 'A'
 write (6,1) fa
 1 format (1H , a)
The C counterpart to that Fortran code fragment is

 char ca;
 ca = 'A';
 printf ("%c\n", ca);

For the moment, you should accept that the C function called printf
will display the single character held in the C variable ca. Chapters 5† and
8† will present C file input/output in detail. Longer strings of characters
are declared in Fortran as follows:

 character*6 fa
 fa = 'ABCDEF'
c Display as: ABCDEF
 write (6,1) fa
 1 format (1H , a6)
The length of the string is arbitrary. In C, that same declaration is as
follows:

 char *ca;
 ca = "ABCDEF";
/* Display as: ABCDEF */
 printf ("%s\n", ca);

Here, a string length limit of at least 509 characters is supported. In C, a
character string is defined as an array of characters. In the char
statement, the asterisk that precedes the name of the variable ca
establishes an array that can be referred to through a pointer. Arrays and
pointers in C are presented in Chapter 6.†

Complex Data Type
C provides no native support for a data type like the complex data

type from Fortran. Binary arrays that pair two floating point numbers to
represent the real and imaginary parts of a complex number can easily be

constructed in C. Unlike Fortran, C has no predefined operators to
perform arithmetic operations on such structures. The section in Chapter
5 for Fortan’s complex† statement has further suggestions.

Double Precision Data Type
Extended precision floating point numbers are represented as

double precision (or real*8) in Fortran and as double and long
double in C. There is a direct correspondence among double
precision, real*8, and double. Depending on the implementation of
a C compiler, the long double data type can have greater precision than
double. In Fortran, extended precision floating point numbers are
declared, initialized, and displayed as follows:

 double precision fx
 real*8 fy
 fx = 1.23d0
 fy = 456.0d0
c Display as: .123E+001 456.0
 write (6,1) fx, fy
 1 format (1H , e9.3e3, 1x, f5.1)
The C counterpart to that Fortran code fragment is as follows:

 double cx;
 long double cz;
 cx = 1.23;
 cz = 456.0L;
/* Display as: 1.23e+000 456.0 */
 printf ("%8.2e %5.1Lf\n", cx, cz);

Fortran variables such as fx and fy usually have internal
representations accurate to approximately 14 digits. By default, both C
variables such as cx and cz have internal representations accurate to at
least 10 digits. Although there is a direct correspondence between
variables fx and cx, differences exist between variables fy and cz. In
Fortran, double precision and real*8 are synonymous, so
variables fx and fy are the same type. In C, the double data type,
represented by the variable cx, is the direct counterpart. Long double
variables, such as cz, can be represented with greater accuracy than
double variables such as cx. Any given implementation of a C compiler

can increase the 10 digit default limit provided that the accuracy of long
double variables is at least, if not more than, the accuracy of double
variables. Table 3-2† shows the range of values for C data types.

Integer Data Type
Integer valued variables can be declared in three ways in Fortran and

17 ways in C. In Fortran, integers are declared, initialized, and displayed
as

 integer*2 fi
 integer*4 fj
 integer fk
 fi = 12
 fj = 34
 fk = 56
c Display as: 123456
 write (6,1) fi, fj, fk
 1 format (1H , 3i2)
Fortran variable fi ranges from -32,767 to 32,767 and variables fj and
fk range approximately two billion above and below zero. Variable fk
is declared according to 1978 ANSI standard Fortran. Variables fi and
fj are not declared in a standard-conforming way, but integer*2 and
integer*4 statements are common Fortran extensions. The C
counterpart to that Fortran code fragment is

 int ci = 1;
 short cj = 2;
 signed ck = 3;
 unsigned cl = 4U;
 long cm = 5L;
 unsigned long cn = 6UL;
/* Display as: 123456 */
 printf ("%d%hd%d%u%ld%lu\n", ci,cj,ck,cl,cm,cn);

C variables ci, cj, and ck are most like the Fortran variable fi with a
range of -32,767 to 32,767. C variable cl is also similar to the Fortran
variable fi, except that its range lies in the positive numbers from zero to
65,535. C variable cm corresponds exactly with Fortran variables fj and
fk. Lastly, C variable cn is like Fortran variables fj and fk, except

that its range lies in the positive numbers from zero to slightly over four
billion. C integer data types permit several different declarations to specify
variables with identical numerical ranges. Individual implementations of C
can differ, but a guiding principal is that the short integer data type supports
16 bit integers, the int data type is the “natural” size (often 16 bit integers)
for the target computer system, the long data type supports at least 32 bits,
and the unsigned data type qualifier shifts the numerical range of the
underlying data type into the positive numbers.

Logical Data Type
C provides no native support for a data type like the logical data type

from Fortran. Arrays of bit fields that gang multiple integers to represent
the series of logical variables could be constructed in C. But unlike
Fortran, C has no predefined operators to manipulate, compare, and
perform input/output on such structures such as provided for by Fortran.
The entry for Fortran’s logical† statement in Chapter 5 has further
suggestions.

Real Data Type
Single precision floating point numbers are represented as real in

Fortran and as float in C. In Fortran, single precision floating point
numbers are declared, initialized, and displayed as follows:

 real*4 fx
 real fy
 fx = 7.0
 fy = 8.0
c Display as: 7.0 8.0
 write (6,1) fx, fy
 1 format (1H , f3.1, 1x, f3.1)

Typically, Fortran floating point variables have an internal
representation accurate to six digits. Variable fy is declared according
to 1978 ANSI standard Fortran. Variable fx is not declared in a
standard-conforming way, but the real*4 statement is a common Fortran
synonym for real. The C counterpart to that Fortran code fragment is
as follows:

 float cx;
 float cy;

 cx = 7.0F;
 cy = 8.0F;
/* Display as: 7.0 8.0 */
 printf ("%3.1f %3.1f\n", cx, cy);

By default, C single precision floating point variables have an internal
representation accurate to at least 10 digits. Floating point constants with
the F suffix are considered to be single precision: without the F suffix,
such a constant defaults to the extended precision data type double.

NUMERICAL RANGE
C compilers can choose to implement a wider numerical range than

that described in this chapter. This affects the accuracy, minimum value,
and maximum value of floating point data types. By default, the accuracy
of both double and long double are at least 10 digits. As C is defined,
nothing prevents a compiler developer from establishing the accuracy of
the float data type at 10 digits, double at 16 digits, and long double at 20
digits. Figure 3-1† is a C program that will display the range of values for
C data types in a format like Table 3-2† for any ANSI C compiler.

STORAGE ALLOCATION
Fortran and C provide a type qualifier that will preserve the initial

value of a variable. The Fortran parameter statement and the C const
statement inform a compiler that the value of the named variable will not
change during the course of program execution. In the following Fortran
program,

 program main
 real fx
 parameter (fx = 123.0)
 real fy
 fy = fx
c Display as: 123.0 123.0
 write (6,1) fx, fy
 1 format (1H , f5.1, 1x, f5.1)
 stop
 end
variable fx is initialized to 123.0 in the parameter statement and never
again appears on the left-hand side of any assignment operator. In the

fifth line of that example, the value of the parameter variable fx is
assigned to the variable fy. A Fortran compiler would flag as a fatal
error if that fifth line read fx = fy because the value of a parameter
variable, once set, can not be altered. An equivalent C program is as
follows:

 const float cx = 123.0F;
 main ()
 {
 float cy;
 cy = cx;
/* Display as: 123.0 123.0 */
 printf ("%5.1f %5.1f\n", cx, cy);
 return;
 }

The float data type for the variable cx is qualified with the const token
to indicate that its value, 123.0, will not be modified in the program. A C
compiler would flag as a fatal error if that fifth line read cx = cy because the
value of a const variable, once set, can not be altered. C also provides a
volatile qualifier that specifies the reverse of the const qualifier. Whereas
a const variable can not be changed, a volatile variable changes often. A
C compiler is expected to immediately retrieve or store the value of a
volatile variable at the precise point in a program that such a variable is
referred to or assigned a value. Both const and volatile variables allow
some measure of control over program optimization: const signals that
optimization can be accomplished, and volatile forces optimization to be
deferred.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 4: Operators

There are five broad groups of operators in both Fortran and C:
arithmetic, character, relational, logical, and bitwise (see Table 4-1†).
Fortran and C have an identical basic set of operators, but C provides
extensions with some convenient new arithmetic operators and fully
supported bitwise operators.

When several operators appear in an expression, Fortran and C have
identical rules of precedence and associativity for common operators.
Precedence determines the order in which a mix of operators in a single
statement are executed, such as multiplication and division before addition
and subtraction. Associativity determines the order in which two or more
of the same operator in a single statement are executed, such as from left
to right across the statement or from right to left. It is common practice in
Fortran programs for the programmer to establish an explicit order of
evaluation with the liberal use of parentheses to group parts of an
expression. All ANSI C compilers and many earlier C compilers will not
rearrange expressions in the presence of parentheses. However, the
original definition of the C language permitted a compiler to regroup
multiple occurrences of addition and multiplication operators regardless of
the placement of parentheses.

ARITHMETIC OPERATORS
Fortran and C share an almost identical set of arithmetic operators.

All five Fortran arithmetic operators are used in the following program:

 program main
 real fx
 real fy
 fx = 4.56
 fy = 1.23
 write (6,1) fx ** 2.0
 1 format (1H , 'Exponentiation ', f5.2)
 write (6,2) fx * fy
 2 format (1H , 'Multiplication ', f5.2)
 write (6,3) fx / fy
 3 format (1H , 'Division ', f5.2)
 write (6,4) fx + fy
 4 format (1H , 'Addition ', f5.2)

 write (6,5) fx - fy
 5 format (1H , 'Subtraction ', f5.2)
 stop
 end
This display is produced:

Exponentiation 20.79
Multiplication 5.61
Division 3.71
Addition 5.79
Subtraction 3.33
The same display results from this C program:

 #include <math.h>
 main ()
 {
 float cx = 4.56F;
 float cy = 1.23F;
 printf ("Exponentiation %5.2f\n", pow (cx, 2.0F));
 printf ("Multiplication %5.2f\n", cx * cy);
 printf ("Division %5.2f\n", cx / cy);
 printf ("Addition %5.2f\n", cx + cy);
 printf ("Subtraction %5.2f\n", cx - cy);
 return;
 }

Note that C does not have an exponentiation operator but a standard
mathematical library function, pow, is available to accomplish the same
results.

C provides nine arithmetic operators that have no direct counterpart
in Fortran. Four of these new operators provide a convenient syntax for
assigning a new value to a variable as a function of its old value. Fortran
statements like
 fx = fx + fy
can be written in C for addition and the three other primary arithmetic
operators (i.e., division, multiplication, and subtraction) as
 cx += cy;

Two other operators allow a compact syntax for changing the value of
a variable by one. Fortran statements like
 fx = fx + 1
 fi = fi - 1
can be written in C as
 cx = ++cx;
 ci = --ci;

A pair of operators provide for computations comparable to the
Fortran mod intrinsic function. The ninth new operator is a single-line
shorthand for the Fortran if ... then/else construct. Figure 4-1†
demonstrates all nine C operators with a C program that generates the
results shown in Figure 4-2.† A line-for-line Fortran translation of that
program is listed in Figure 4-3.† There are superfluous lines in both
example programs: variables ci and fi, respectively, exist only to record
the initial value of the change variable, ck and fk, and are not otherwise
required.

CHARACTER OPERATOR
The Fortran concatenation operator allows a programmer to generate

a single long string from several components, as in the following program:

 program main
 character*5 fca
 character*5 fcb
 character*15 fcd
 fca = 'aaaaa'
 fcb = 'bbbbb'
 fcd = fca // fcb // 'ccccc'
 write (6,1) fcd
 1 format (1H , 'Concatenation ', a15)
 stop
 end
This display is produced:

Concatenation aaaaabbbbbccccc
The same display results from the C program:

 #include <string.h>
 main ()
 {
 char cca[5] = "aaaaa";
 char ccb[5] = "bbbbb";
 char ccd[15] = "";
 strcat (ccd, cca);
 strcat (ccd, ccb);
 strcat (ccd, "ccccc");
 printf ("Concatenation %s\n", ccd);
 return;
 }

Note that C does not have a concatenation operator; but a standard
string library function, strcat, is available to accomplish the same result.

RELATIONAL OPERATORS
There are six relational operators in Fortran to compare the relative

values of variables. A Fortran program which demonstrates these
operators:

 program main
 real fx
 real fy
 real fz
 fx = 4.56
 fy = 1.23
 fz = fy
 if (fy .lt. fx) write (6,1) fy, fx
 1 format (1H , f4.2, ' .LT. ', f4.2)
 if (fy .le. fz) write (6,2) fy, fz
 2 format (1H , f4.2, ' .LE. ', f4.2)
 if (fy .eq. fz) write (6,3) fy, fz
 3 format (1H , f4.2, ' .EQ. ', f4.2)
 if (fy .ne. fx) write (6,4) fy, fx
 4 format (1H , f4.2, ' .NE. ', f4.2)
 if (fx .gt. fy) write (6,5) fx, fy
 5 format (1H , f4.2, ' .GT. ', f4.2)
 if (fy .ge. fz) write (6,6) fy, fz
 6 format (1H , f4.2, ' .GE. ', f4.2)
 stop

 end
It produces this display:

1.23 .LT. 4.56
1.23 .LE. 1.23
1.23 .EQ. 1.23
1.23 .NE. 4.56
4.56 .GT. 1.23
1.23 .GE. 1.23
That same demonstration program in C is as follows:

 main ()
 {
 float cx = 4.56F;
 float cy = 1.23F;
 float cz = cy;
 if (cy < cx)
 printf ("%4.2f .LT. %4.2f\n", cy, cx);
 if (cy <= cz)
 printf ("%4.2f .LE. %4.2f\n", cy, cz);
 if (cy == cz)
 printf ("%4.2f .EQ. %4.2f\n", cy, cz);
 if (cy != cx)
 printf ("%4.2f .NE. %4.2f\n", cy, cx);
 if (cx > cy)
 printf ("%4.2f .GT. %4.2f\n", cx, cy);
 if (cy >= cz)
 printf ("%4.2f .GE. %4.2f\n", cy, cz);
 return;
 }

The program uses relational operators to compare floating point
values: double precision, integer, or individual characters
declared using C's int data type could also have been used.

LOGICAL OPERATORS
There are six logical operators in Fortran to compare values of

Fortran logical data type variables. Four of these six operators function
solely with Fortran logical data type variables. The remaining two

operators – .and. and .or. – are used to combine the comparison of
several variables, such as in the following:

 program main
 real fx
 real fy
 real fz
 fx = 4.56
 fy = 1.23
 fz = 3.33
 if (fx .gt. fz .and.
 - fy .lt. fz) write (6,1) fy, fz, fx
 1 format (1H ,'.AND. ',f4.2,' < ',f4.2,' <
',f4.2)
 if (fz .gt. fy .or.
 - fz .gt. fx) write (6,2) fz, fy, fx
 2 format (1H ,'.OR. ',f4.2,' > ',f4.2,' or ',f4.2
)
 stop
 end
It generates these two line of output:

.AND. 1.23 < 3.33 < 4.56

.OR. 3.33 > 1.23 or 4.56
The C counterpart to such a program is as follows:

 main ()
 {
 float cx = 4.56F;
 float cy = 1.23F;
 float cz = 3.33F;
 if (cx > cz && cy < cz)
 printf (".AND. %4.2f < %4.2f < %4.2f\n",
 cy, cz, cx);
 if (cz > cy || cz > cx)
 printf (" .OR. %4.2f > %4.2f or %4.2f\n",
 cz, cy, cx);
 return;
 }

Like in Fortran, the two C logical operators are in constant use to
build compound tests so as to isolate circumstances in which a program
needs to take special action.

BITWISE OPERATORS
Fortran has no operators specifically designed to manipulate the bits

of a variable. Modern Fortran compilers regularly allow two logical
operators, .and. and .or., to accept integer arguments for the
purpose of handling bit level activity. In addition, these compilers often
extend ANSI standard Fortran by including functions to perform bit shift
operations. Bit level operators are fully specified in ANSI standard C.
Figure 4-4† demonstrates the syntax of all six C bitwise operators and
produces the display shown in Figure 4-5.†

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 5: Concordance

Fortran programs are written using forty-seven distinct statements.
This chapter has a separate section for each Fortran statement. Each
statement is presented in the same fashion: Fortran syntax, primary C
counterpart, other C statements of interest, example Fortran program,
example program output, and example C program. Not surprisingly,
several Fortran statements have no single C counterpart. In such cases,
the example C program was written to parallel the example Fortran
program as closely as possible and to produce similar results.

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Concordance Index in Table
of Contents ":conindex:MAIN}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " First Concordance Fortran
Statement ":assign:MAIN}

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 5 Concordance: ASSIGN

Fortran assign LABEL to VARIABLE
C Primary ##, #define
C Secondary goto

Fortran’s assign statement associates a statement label with the
name of an integer variable. The label must refer to another executable
statement in the same program unit in which the assign statement
appears. Once a statement label has been assigned to a variable, that
variable can be used in any of the various forms of Fortran’s go to
statements or as labels for format statements. The following Fortran
program uses the assign statement in both modes:

 program main
 integer label
 integer fnumb
 assign 2 to label
 assign 5 to fnumb
 go to label
 write (6,1)
 1 format (1H , 'This will be skipped.')
 stop
 2 continue
 write (6,3)
 3 format (1H , 'This will be displayed (1 of
2).')
 write (6,fnumb)
 4 format (1H , 'This will NEVER be displayed.')
 5 format (1H , 'This will be displayed (2 of
2).')
 stop
 end
The program generates this display:

This will be displayed (1 of 2).
This will be displayed (2 of 2).

A C program that accomplishes the same function is as follows:

 main()
 {
 #define LABEL lab2
 #define DISPLAY4 printf ("This will NEVER be "
 "displayed.\n")
 #define DISPLAY5 printf ("This will be displayed "
 "(2 of 2).\n")
 #define DISPLAY(x) DISPLAY##x
 goto LABEL;
 printf ("This will be skipped.\n");
 return;
 lab2:
 printf ("This will be displayed (1 of 2).\n");
 DISPLAY(5);
 return;
 }

This C program illustrates several C language features: labels,
manifest constants, and function macros. Fortran uses labels for a
number of features such as flow control, do loops, and format
statements. C counterparts to such Fortran constructs do not use labels.
Most C programs have no labels. When it adds clarity to the intent of a
program, the C goto statement can be used to modify the flow of control.
It takes one argument which is the name of the label to which control will
pass. In this example, the label is itself a variable.

The first three uses of the C #define statement establish three
manifest constants. When a variable appears in a such a #define
statement, it is initialized with the string that follows on that line. At
compile time, that variable will be replaced with the string wherever the
variable appears in that program unit. In the example program, the line
goto LABEL is interpreted by the compiler as if it had been written as goto
lab2. Note that it is customary, but not required, to write manifest
constants in uppercase.

The last #define statement establishes a function macro. When
invoked, its single argument will be concatenated onto the end of the string
DISPLAY through the use of the ## token-pasting operator. In the
example, the line DISPLAY(5) is interpreted by the compiler as if it was

written as DISPLAY5 which in turn is replaced by the line

 printf ("This will be displayed (2 of 2).\n")

Function macros are discussed again in this chapter in the section on
Fortran’s function† statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: BACKSPACE

Fortran backspace UNIT
backspace (UNIT, iostat=VAR, err=LAB)

C Primary fseek, ftell
C Secondary %n, do:while, exit, fclose, fopen, for, perror

The backspace statement allows a record in a sequential file to be
reprocessed. It repositions the file pointer to the beginning of the
preceding record. The following Fortran program creates a file, writes five
records into that file, reads the file forwards, and then, using the
backspace statement, reads the file backwards.

 program main
 integer output, error, records, input
 character*24 line
 input = 7
 output = 8
 open (unit=output, access="SEQUENTIAL",
 - file='backs.dat', form="FORMATTED",
 - iostat=error, status='NEW')
 if (error .ne. 0) then
 write (6,1)
 1 format (1H , 'Open of [backs.dat] for ',
 - 'output failed!')
 go to 15
 end if
 records = 0
 do 3 i = 1, 5, 1
 records = records + 1
 write (output,2) records
 2 format ('Record_number_', i1, '_read.')
 3 continue
 close (unit=output, iostat=error,
status='KEEP')
 if (error .ne. 0) then
 write (6,4)
 4 format (1H , 'Close of [backs.dat] after',
 - 'output failed!')

 go to 15
 end if
 open (unit=input, access='SEQUENTIAL',
 - file='backs.dat', form='FORMATTED',
 - iostat=error, status='OLD')
 if (error .ne. 0) then
 write (6,5)
 5 format (1H , 'Open of [backs.dat] for ',
 - 'input failed!')
 go to 15
 end if
 write (6,6)
 6 format (/ 1H , 'Read the file forwards.')
 do 9 i = 1, 5, 1
 read (input,7) line
 7 format (a24)
 write (6,8) line
 8 format (1H , a24)
 9 continue
 write (6,10)
 10 format (/ 1H , 'Read the file backwards.')
 do 13 i = 1, records, 1
 backspace (unit=input, iostat=error)
 if (error .ne. 0) then
 write (6,11)
 11 format (1H , 'Backspace of [backs.dat]
',
 - 'failed!')
 go to 15
 end if
 read (input,7) line
 write (6,8) line
 backspace (unit=input, iostat=error)
 if (error .ne. 0) then
 write (6,12)
 12 format (1H , 'Backspace of [backs.dat]
',
 - 'failed!')
 go to 15
 end if

 13 continue
 close (unit=input, iostat=error, status='KEEP')
 if (error .ne. 0) then
 write (6,14)
 14 format (1H , 'Close of [backs.dat] after ',
 - 'input failed!')
 go to 15
 end if
 15 continue
 stop
 end
The program generates this display:

Read the file forwards.
Record_number_1_read.
Record_number_2_read.
Record_number_3_read.
Record_number_4_read.
Record_number_5_read.
Read the file backwards.
Record_number_5_read.
Record_number_4_read.
Record_number_3_read.
Record_number_2_read.
Record_number_1_read.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 #include <stdlib.h>
 #include <stddef.h>
 main()
 {
 FILE *output;
 int error;
 int records;
 int i;
 FILE *input;
 char *line;

 int bytes;
 int items;
 long position;
 if ((output = fopen ("backs.dat", "wa")) == NULL) {
 perror ("Open of [backs.dat] for output "
 "failed!");
 exit (EXIT_FAILURE);
 }
 records = 0;
 for (i = 0; i < 5; i++) {
 records = ++records;
 fprintf (output, "Record_number_%i_read.\n",
 records);
 }
 if ((error = fclose (output)) == EOF) {
 perror ("Close of [backs.dat] after output "
 "failed!\n");
 exit (EXIT_FAILURE);
 }
 if ((input = fopen ("backs.dat", "r")) == NULL) {
 perror ("Open of [backs.dat] for input "
 "failed!");
 exit (EXIT_FAILURE);
 }
 printf ("\nRead the file forwards.\n");
 for (i = 0; i < records; i++) {
 items = fscanf (input, "%s%n", line, &bytes);
 printf ("%s\n", line);
 }
 printf ("\nRead the file backwards.\n");
 if ((position = ftell (input)) == -1L) {
 perror ("Can't determine position in "
 "[backs.dat]!\n");
 exit (EXIT_FAILURE);
 }
 do
 {
 position = (position > bytes) ? position-bytes : 0;
 if (fseek (input, position, SEEK_SET) != 0) {
 perror ("Backspace of [backs.dat] failed!\n");

 exit (EXIT_FAILURE);
 }
 items = fscanf (input, "%s%n", line, &bytes);
 printf ("%s\n", line);
 position = --position;
 } while (position > 0);
 if ((error = fclose (input)) == EOF) {
 perror ("Close of [backs.dat] after input "
 "failed!\n");
 exit (EXIT_FAILURE);
 }
 exit (EXIT_SUCCESS);
 }

Both example programs open a file for output, initialize the file with
data, close the file, re-open the file for input, and read the file sequentially
forward and then in reverse. Fortran’s backspace statement is defined
only for sequential access files. Specifying an access mode of
SEQUENTIAL and repeating the default form of FORMATTED in the
Fortran open statement corresponds to the C library function fopen
invoked with an access mode of wa.

Error detection in the Fortran open statement is handled with the
iostat construct. This corresponds to C’s comparison of the fopen
function return value to the ANSI standard C constant, NULL, as defined in
the file stddef.h. Error messages have to created by the user in Fortran as
in format statements 2, 4, 5, 11, 12, and 14. The C example program
adds specific error messages to the standard C error messages. Such
standard error messages would follow user-defined strings given as
arguments to the perror function. On error, the Fortran example program
branches unconditionally to the end for a single exit point at label 15.
Under similar conditions, the C example program stops at once by invoking
the exit function with an argument set to the ANSI standard C constant,
EXIT_FAILURE, as defined in the file stdlib.h. Certainly, the Fortran
example could have been coded with a stop statement wherever the go
to 15 statement appeared. Conversely, the C program could have been
coded with a goto some_label where that label was near the end of the
program instead of multiple occurrences of the exit (EXIT_FAILURE) line
of code. The example programs were written as they appear because
both demonstrate common programming styles in Fortran versus C.

Once the file has been opened, it is populated with five records. C’s
for loop construct uses an index (the variable i) that is initialized to zero, is
incremented (the i++ token) at the bottom of the loop, and tested (the i < 5
token) at the top of the loop until the test fails. Fortran’s write to a file is
matched by C’s fprintf library function. Since the file was opened for
output, it needs to be released and then re-opened for input. Fortran’s
close and open statements here are matched by C’s fclose and fopen
library functions. Note that errors are detected in the C fclose library
function by comparing the return value to the ANSI standard C constant
EOF as defined in the file stdio.h.

Reading the file in C uses the fscanf library function. This function
returns the number of fields successfully read into the variable items as
well as the number of bytes successfully read using the %n format into the
variable bytes. Although the Fortran backspace statement shields the
user from needing to know the length of each record, such information is
critical to the C library functions ftell and fseek used to emulate Fortran’s
backspace statement. The number of bytes written to the file is reported
by the C library function ftell and recorded in the variable position.

The file is then read by backing up over each record using the fseek
library function until the beginning of the file is encountered. C’s do:while
construct instructs the program to execute the body of the loop until the file
is positioned before the beginning of the file. File position is manipulated
by C’s fseek function invoked to reset the file pointer using the SEEK_SET
argument as defined in the file stdio.h. The file pointer is re-set to the
number of bytes from the beginning of the file as recorded in the variable
position. Immediately before fseek is used, a new file position is
calculated. This new file position is based on the number of characters
read from the file on the prior call to fscanf.

In the C example program, a record is read and then the file pointer is
returned to the beginning of that record. This is very different from
Fortran’s backspace statement in which the file pointer is set to the
beginning of the preceding record. Therefore, as coded, the C example
program is appropriate only for circumstances when file has fixed length
records. For variable length records, a scheme would have to be devised
of keeping track of the actual length of each record (i.e., in an array) which
would then be incorporated into the calculation of where each record would
begin in the file.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: BLOCK

Fortran block data NAME
C Primary #define, #undef
C Secondary void

The block data statement begins a program unit in which
variables stored in common areas are initialized. ANSI Fortran restricts
which Fortran statements can appear in a block data program unit to
those statements closely associated with giving a variable its initial value.
The following Fortran program is an example of the block data
statement:

 program main
 common / area / fvar
 call subprogram
 stop
 end
 subroutine subprogram
 common / area / fvar
 write (6,1) fvar
 1 format (1H , 'Variable = ', f3.1)
 return
 end
 block data initialize
 common / area / fvar
 data fvar / 4.5 /
 end
The program generates this display:

Variable = 4.5
A C program that accomplishes the same function is as follows:

 #define cvar 4.5
 main ()
 {
 void subprogram ();
 subprogram();

 return;
 }
 void subprogram ()
 {
 printf ("Variable = %3.1f\n", cvar);
 return;
 }

Because the variable cvar appeared in a #define statement before
the beginning of the program, its value is a constant and is available to any
program unit (i.e., main and subprogram). The #define statement
establishes cvar as a constant (i.e., a Fortran parameter). If the value of
cvar had to change frequently, then instead of the #define statement the
following should be used in its place:

 float cvar = 4.5F;

This declares cvar as a single precision floating point variable and
initializes it to 4.5. Having placed the statement before the beginning of
the program, this value of 4.5 for the variable cvar is available to any
program unit. If the value of cvar changed infrequently within a single
source code file, it could be “un-defined” and then reset, such as

 #undef cvar
 #define cvar 1.2

This technique should be used with caution, however, because the
new value is in effect only for the remainder of the source code file in which
it appears. A final note about the C example program concerns the use of
the void qualifier. When the subprogram function was declared and when
it appeared in the source code file, it was qualified with the term void. This
qualifier instructs the compiler that the function does not return a value.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: CALL

Fortran call NAME
call NAME (ARGUMENTS)

C Primary NAME ()
C Secondary &, strcpy, void

Nearly every Fortran program is structured in the same fashion: a
main program which selectively invokes subroutines and/or functions. In
Fortran, a subroutine is invoked by the call statement which specifies by
name the subroutine to exercise and if necessary passes values to and
from the subroutine through an argument list enclosed in parentheses. As
an example, the following program calls a single subroutine which modifies
three global variables held in a common area and also changes each of the
three local variables named in the argument list:

 program main
 character*3 globalc, localc
 integer globali, locali
 real globalr, localr
 common / area / globalc, globali, globalr
 data globalc / 'abc' /
 data globali / 123 /
 data globalr / 4.5 /
 localc = 'xyz'
 locali = 678
 localr = 9.0
 write (6,1) globalc, globali, globalr,
 - localc, locali, localr
 1 format (1H , 'MAIN Global: ', a3, i5, f5.1,
 - ' Local : ', a3, i5, f5.1)
 call sub (localc, locali, localr)
 write (6,1) globalc, globali, globalr,
 - localc, locali, localr
 stop
 end
 subroutine sub (localc, locali, localr)
 character*3 globalc, localc
 integer globali, locali

 real globalr, localr
 common / area / globalc, globali, globalr
 write (6,1) globalc, globali, globalr,
 - localc, locali, localr
 1 format (1H , 'SUB Global: ', a3, i5, f5.1,
 - ' Local : ', a3, i5, f5.1)
 globalc = 'ABC'
 globali = globali * 10
 globalr = globalr * 10.0
 localc = 'XYZ'
 locali = locali * 10
 localr = localr * 10.0
 write (6,1) globalc, globali, globalr,
 - localc, locali, localr
 return
 end
The program generates this display:

MAIN Global: abc 123 4.5 Local : xyz 678 9.0
SUB Global: abc 123 4.5 Local : xyz 678 9.0
SUB Global: ABC 1230 45.0 Local : XYZ 6780 90.0
MAIN Global: ABC 1230 45.0 Local : XYZ 6780 90.0
A C program that accomplishes the same function is as follows:

 char *globalc = "abc";
 int globali = 123;
 float globalr = 4.5F;
 main()
 {
 char *localc = "xyz";
 int locali = 678;
 float localr = 9.0F;
 void sub (char *localc,int *locali,float *localr);
 printf ("MAIN Global: %3s %5i %5.1f "
 "Local : %3s %5i %5.1f\n",
 globalc, globali, globalr,
 localc, locali, localr);
 sub (localc, &locali, &localr);
 printf ("MAIN Global: %3s %5i %5.1f "

 "Local : %3s %5i %5.1f\n",
 globalc, globali, globalr,
 localc, locali, localr);
 printf ("C call\n");
 return;
 }
 void sub (char *localc, int *locali, float *localr)
 {
 printf ("SUB Global: %3s %5i %5.1f "
 "Local : %3s %5i %5.1f\n",
 globalc, globali, globalr,
 localc, *locali, *localr);
 strcpy (globalc, "ABC");
 globali = globali * 10;
 globalr = globalr * 10.0;
 strcpy (localc, "XYZ");
 *locali = *locali * 10;
 *localr = *localr * 10.0;
 printf ("SUB Global: %3s %5i %5.1f "
 "Local : %3s %5i %5.1f\n",
 globalc, globali, globalr,
 localc, *locali, *localr);
 return;
 }

In both programs, three global and three local variables are declared.
Global and local variables of types integer, floating point, and character are
initialized. In the C example program, the subprogram sub is then
specified in a function prototype statement. In the function prototype
statement, the void qualifier informs the compiler that sub does not return a
value, and the prototype argument list is declared to hold three elements
which are pointers to character, integer, and floating point variables. ANSI
C requires that each function be introduced with a function prototype
statement.

Both programs display the value of each variable as initialized in the
main program. When the subprogram is invoked in the C example, the &
operator is used to pass the address of the two numeric arguments. In
other words, &locali is the address of the int variable locali and &localr is
the address of the float variable localr. Note that the char variable *localc
is itself a pointer. Pointers are required here because the function sub is

designed to change the value of all three of its arguments. There is a
valuable side effect of enforcing this “call by value” structure of C: it forces
a programmer to specify as pointers any argument whose value might
change in the function. Once sub gains control, the value of its arguments
are displayed. Global and local numeric arguments are multiplied by ten.
Global and local character variables are given new values with the strcpy
function. Before returning, the sub function displays the new values of
each global and local variable. The main program completes execution by
showing the final values of all variables.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: CHARACTER

Fortran character*length VARIABLE
character VARIABLE*length
character*(*) VARIABLE

C Primary char
C Secondary %*s, size_t, strcat, strcpy, strlen

Character data handling separates ANSI 66 Fortran from ANSI 77
Fortran. The newer standard supports a character data type, character
input/output formats, and a limited set of character-related intrinsic
functions. Most implementations of ANSI 77 Fortran provide access to a
library that includes subroutines for character string manipulation such as
copying, searching, justifying, and trimming. However, these subroutines
are not in the ANSI standard and vary from system to system. The
following Fortran example program uses only ANSI standard statements to
create global and local character variables – strings and arrays – and
access these variables in whole and in part:

 program main
 character*3 gwhole
 character lwhole*3
 character gparts*1(3)
 character*1 lparts(3)
 character
expandable*14
 character single
 integer numeric
 common / area / gwhole, gparts
 gwhole = 'abc'
 gparts(1) = 'd'
 gparts(2) = 'e'
 gparts(3) = 'f'
 lwhole = 'uvw'
 lparts(1) = 'x'
 lparts(2) = 'y'
 lparts(3) = 'z'
 expandable = 'ghijklmnop'
 write (6,1) gwhole, gparts, expandable,

 - lwhole, lparts
 1 format (1H , 'MAIN ', a3,1x, 3a1,1x,
'[',a,']',1x,
 - a3,1x, 3a1)
 call sub (lwhole, lparts, expandable)
 write (6,1) gwhole, gparts, expandable,
 - lwhole, lparts
 gwhole(2:2) = 'b'
 gparts(2)(1:1) = 'e'
 lwhole(2:2) = 'v'
 lparts(2)(1:1) = 'y'
 write (6,1) gwhole, gparts, expandable,
 - lwhole, lparts
 single = 'a'
 numeric = ichar (single)
 write (6,2) single, char (numeric), numeric
 2 format (1H , 'MAIN Single character ', '[',a,']'
 - ' numeric value is: ', a, ' => ',
i3.3)
 stop
 end
 subroutine sub (lwhole, lparts, expandable)
 character*3 gwhole
 character lwhole*3
 character gparts*1(3)
 character*1 lparts(3)
 character*(*) expandable
 integer length
 common / area / gwhole, gparts
 length = len (expandable)
 write (6,1) gwhole, gparts,
expandable(1:length),
 - lwhole, lparts
 1 format (1H , 'SUB ', a3,1x, 3a1,1x,
'[',a,']',1x,
 - a3,1x, 3a1)
 expandable = 'GHIJK' // 'LMNOP'
 expandable(1:length) = expandable(1:10) // 'QRST'
 write (6,1) gwhole, gparts,
expandable(1:length),

 - lwhole, lparts
 gwhole = 'ABC'
 gparts(1) = 'D'
 gparts(2) = 'E'
 gparts(3) = 'F'
 lwhole = 'UVW'
 lparts(1) = 'X'
 lparts(2) = 'Y'
 lparts(3) = 'Z'
 write (6,1) gwhole, gparts,
expandable(1:length),
 - lwhole, lparts
 return
 end
The program generates this display:

MAIN abc def [ghijklmnop] uvw xyz
SUB abc def [ghijklmnop] uvw xyz
SUB abc def [GHIJKLMNOPQRST] uvw xyz
SUB ABC DEF [GHIJKLMNOPQRST] UVW XYZ
MAIN ABC DEF [GHIJKLMNOPQRST] UVW XYZ
MAIN AbC DeF [GHIJKLMNOPQRST] UvW XyZ
MAIN Single character [a] numeric value is: a => 097
A C program that accomplishes the same function is as follows:

 char *gwhole = "abc";
 char *gparts[3] = { "d", "e", "f" };
 main()
 {
 char *lwhole = "uvw";
 char *lparts[3] = { "x", "y", "z" };
 char *expandable = "ghijklmnop";
 char single;
 int numeric;
 void sub (char *lwhole, char *lparts[3],
 char *expandable);
 printf ("MAIN %3s %s%s%s [%-14s] %3s %s%s%s\n",
 gwhole, gparts[0], gparts[1], gparts[2],
 expandable,

 lwhole, lparts[0], lparts[1], lparts[2]);
 sub (lwhole, lparts, expandable);
 printf ("MAIN %3s %s%s%s [%-14s] %3s %s%s%s\n",
 gwhole, gparts[0], gparts[1], gparts[2],
 expandable,
 lwhole, lparts[0], lparts[1], lparts[2]);
 gwhole[1] = 'b';
 gparts[1] = "e";
 lwhole[1] = 'v';
 lparts[1] = "y";
 printf ("MAIN %3s %s%s%s [%-14s] %3s %s%s%s\n",
 gwhole, gparts[0], gparts[1], gparts[2],
 expandable,
 lwhole, lparts[0], lparts[1], lparts[2]);
 single = 'a';
 numeric = single;
 printf ("MAIN Single character [%c] numeric value",
 single);
 printf (" is: %c => %3.3i\n", numeric, numeric);
 return;
 }
 #include <stddef.h>
 void sub (char *lwhole, char *lparts[3],
 char *expandable)
 {
 size_t length;
 printf ("SUB %3s %s%s%s [%-14s] %3s %s%s%s\n",
 gwhole, gparts[0], gparts[1], gparts[2],
 expandable,
 lwhole, lparts[0], lparts[1], lparts[2]);
 length = strlen (expandable);
 strcpy (expandable, "GHIJK");
 strcat (expandable, "LMNOP", 5);
 strcat (expandable, "QRST", 4);
 length = strlen (expandable);
 printf ("SUB %3s %s%s%s [%*s] %3s %s%s%s\n",
 gwhole, gparts[0], gparts[1], gparts[2],
 length, expandable,
 lwhole, lparts[0], lparts[1], lparts[2]);
 strcpy (gwhole, "ABC");

 gparts[0] = "D";
 gparts[1] = "E";
 gparts[2] = "F";
 strcpy (lwhole, "UVW");
 lparts[0] = "X";
 lparts[1] = "Y";
 lparts[2] = "Z";
 printf ("SUB %3s %s%s%s [%*s] %3s %s%s%s\n",
 gwhole, gparts[0], gparts[1], gparts[2],
 length, expandable,
 lwhole, lparts[0], lparts[1], lparts[2]);
 return;
 }

Both programs declare two global variables: gwhole, a character
string; and gparts, an array of character strings. Local variants – lwhole
and lparts – are also created. A function prototype statement for the single
function called sub appears and indicates that the function will take three
character arguments and will not return a value. The value of all variables
are displayed in the main program after initialization.

When the function sub is invoked, it immediately shows the value of
all variables. Then, the length of the string expandable is measured by the
ANSI standard C function strlen. This is the actual length of the string – 10
characters at this point – which is not the same as the Fortran len
function which returns the declared length of the string (14 in the Fortran
example program). Note that the strlen function returns the length of its
string argument in the variable length. Length is declared as a special
type, size_t, which is defined in the standard C file stddef.h to be a whole
number capable of holding a value up to as large as the type unsigned long
(i.e., about 4.3 billion). The standard C function strcpy reinitializes the
variable expandable to GHIJK, and the two subsequent calls to the
standard C function strcat add on more letters to the end of the string
expandable just like the Fortran character concatenation operator //.
The value of all variables are displayed, including the full 14-character
string expandable in uppercase. A new format is introduced to print the
expandable string: the asterisk in the %*s format uses the value of the
length variable as the width of the field in which to display the string. Both
gwhole and lwhole are reinitialized to uppercase versions using the
standard C function strcpy. An uppercase letter is moved into each
element of gparts and lparts, and the value of all variables is displayed.

On return to the main program, the second letter in both the gwhole
and lwhole strings and the second element in the gparts and lparts array of
strings are replaced with lowercase letters. Finally, the value of all
variables are displayed. The last section of the C example program
demonstrates the C counterparts to the Fortran ichar and char
intrinsic functions. The assignment of the value of the char variable single
to the int variable numeric is comparable to the Fortran ichar function.
Using a %c format in the last printf statement for the int variable numeric is
comparable to the Fortran char function.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: CLOSE

Fortran close (NUMBER)
close (unit=NUMBER, status=KEYWORD)
close (NUMBER,iostat=NUMBER,err=LABEL)

C Primary fclose
C Secondary exit, FILE, fopen, if/else, perror, remove, strcmp

The close statement terminates access to a file from a program.
A file can be closed and retained with the status keyword KEEP or
closed and erased with the status keyword DELETE. In either case,
the Fortran programmer can provide error handling with the iostat
variable and/or by branching to the labeled statement specified after the
err keyword. Shown here is a Fortran program that opens a file,
populates the file with five lines of text, and then closes and retains the file.

 program main
 integer output, error, records
 character*6 status
 output = 8
 status = 'KEEP'
 open (unit=output, access='SEQUENTIAL',
 - file='close.dat', form='FORMATTED',
 - iostat=error, status='NEW')
 if (error .ne. 0) then
 write (6,1)
 1 format (1H , 'Open of [close.dat] for
output ',
 - 'failed!')
 go to 6
 end if
 records = 0
 do 3 i = 1, 5, 1
 records = records + 1
 write (output,2) records
 2 format ('Record number ', i1, ' written.')
 3 continue
 write (5,4) status

 4 format (1H, a, ' the [close.dat] file.')
 close (unit=output, iostat=error,
status=status)
 if (error .ne. 0) then
 write (6,5)
 5 format (1H , 'Close of [close.dat] after ',
 - 'output failed!')
 go to 6
 end if
 6 continue
 stop
 end
The program creates this file:

Record number 1 written.
Record number 2 written.
Record number 3 written.
Record number 4 written.
Record number 5 written.
It also generates this display:

KEEP the [close.dat] file.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 #include <stdlib.h>
 #include <stddef.h>
 main()
 {
 FILE *output;
 int error;
 int records;
 int i;
 char *status = "KEEP";
 if ((output = fopen ("close.dat", "w")) == NULL) {
 perror ("Open of [close.dat] for output"
 "failed!");
 exit (EXIT_FAILURE);
 }

 records = 0;
 for (i = 0; i < 5; i++) {
 records = ++records;
 fprintf (output, "Record number %i written.\n",
 records);
 }
 if ((strcmp (status, "KEEP")) == 0) {
 printf ("%s the [close.dat] file.\n", status);
 if ((error = fclose (output)) == EOF)
 perror ("Close of [close.dat] after output "
 "failed!\n");
 exit (EXIT_FAILURE);
 }
 else
 printf ("%s the [close.dat] file.\n", status);
 if ((error = remove ("close.dat")) != 0)
 perror ("Close of [close.dat] after output "
 "failed!\n");
 exit (EXIT_FAILURE);
 exit (EXIT_SUCCESS);
 }

Both programs open a file called close.dat. The Fortran program
explicitly declares the file to be a new file and will error if the file already
exists. The C program opens the file in w mode that will create the file if it
does not exist or open and immediately truncate the file if is already exists.
The C counterpart to the Fortran unit number, iunit, is declared as a
special type, FILE. This type is defined in the C standard file stdio.h and is
described as a pointer to that stream of bytes that constitute a file. Note
that the programmer does not set the unit number in C; the C standard
function fopen establishes a value for iunit that is unique across all files
open in a program. Should an error occur on opening the file, the C
standard function perror will prefix the standard error message with the
string given as the argument to perror. Such an error is considered fatal in
this example program, and the C standard function exit is declared with the
argument EXIT_FAILURE. EXIT_FAILURE and its counterpart
EXIT_SUCCESS are established in the C standard file stdlib.h and are set
to an implementation-defined value that will signal the host operating
system that the program did or didn’t detect a fatal error. Once the file is
open, five records are written into it. The C standard function strcmp is

used to compare the value of the string status to the keyword KEEP. If the
file is to be retained, it is simply closed using the C standard function
fclose. Otherwise, the file is deleted with the C standard function remove.
In either case, the action to be taken – KEEP or not – is displayed, and
both the fclose and remove functions are tested for an error return.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: COMMON

Fortran common / NAME / VARIABLES
C Primary struct
C Secondary strcpy

Most Fortran programs establish one or more common areas. It is
the preferred means to provide a single definition of variables that makes
the value of those variables accessible across multiple program units. As
shared data storage, common can be constructed as simply or as
complicated as the programmer desires. The following Fortran program
declares two common areas, initializes the variables in them, and changes
the value of some common variables in a subroutine:

 program main
 character*3 achar, bchar
 integer aint, bint
 real areal, breal
 common / a / achar, aint, areal
 common / b / bchar, bint, breal
 achar = 'abc'
 aint = 123
 areal = 4.5
 bchar = 'xyz'
 bint = 678
 breal = 9.1
 write (6,1) achar, aint, areal, bchar, bint,
breal
 1 format (1H , 'MAIN common /a/ ', a3,1x, i3,1x,
f3.1,
 - ' common /b/ ', a3,1x, i3,1x,
f3.1)
 call sub
 write (6,1) achar, aint, areal, bchar, bint,
breal
 stop
 end
 subroutine sub
 character*3 achar, bchar

 integer aint, bint
 real areal, breal
 common / a / achar, aint, areal
 common / b / bchar, bint, breal
 write (6,1) achar, aint, areal, bchar, bint,
breal
 1 format (1H , 'SUB common /a/ ', a3,1x, i3,1x,
f3.1,
 - ' common /b/ ', a3,1x, i3,1x,
f3.1)
 achar = 'ABC'
 aint = 123
 areal = 5.4
 bchar = 'XYZ'
 bint = 678
 breal = 1.9
 write (6,1) achar, aint, areal, bchar, bint,
breal
 return
 end
The program generates this display:

MAIN common /a/ abc 123 4.5 common /b/ xyz 678 9.1
SUB common /a/ abc 123 4.5 common /b/ xyz 678 9.1
SUB common /a/ ABC 123 5.4 common /b/ XYZ 678 1.9
MAIN common /a/ ABC 123 5.4 common /b/ XYZ 678 1.9
A C program that performs the same function is as follows:

 char *achar = "abc";
 int aint = 123;
 float areal = 4.5F;
 struct common {
 char *bchar;
 int bint;
 float breal;
 };
 struct common B = { "xyz", 678, 9.1F };
 main()
 {

 void sub ();
 printf ("MAIN common /a/ %s %i %3.1f "
 "common /b/ %s %i %3.1f\n",
 achar, aint, areal,
 B.bchar, B.bint, B.breal);
 sub();
 printf ("MAIN common /a/ %s %i %3.1f "
 "common /b/ %s %i %3.1f\n",
 achar, aint, areal,
 B.bchar, B.bint, B.breal);
 return;
 }
 void sub ()
 {
 printf ("SUB common /a/ %s %i %3.1f "
 "common /b/ %s %i %3.1f\n",
 achar, aint, areal,
 B.bchar, B.bint, B.breal);
 strcpy (achar, "ABC");
 aint = 123;
 areal = 5.4F;
 strcpy (B.bchar, "XYZ");
 B.bint = 678;
 B.breal = 1.9F;
 printf ("SUB common /a/ %s %i %3.1f "
 "common /b/ %s %i %3.1f\n",
 achar, aint, areal,
 B.bchar, B.bint, B.breal);
 return;
 }

Both common areas hold a character string, an integer, and a
floating point number. In Fortran, both common areas are declared in an
identical fashion. In the C example program, variables in the first common
area are declared individually before the main statement which guarantees
that their value will be accessible across all program units. Variables in
the second common area are encapsulated in a data structure called
common. The first struct statement defines a class of structure named
common to contain a character string, an integer, and a floating point
number. The second struct statement declares B to be a structure of class

common. Because B is declared before the main statement, it is globally
accessible. Values for each variable are displayed in the main program
before and after the single function sub is invoked. Elements of what was
in the first Fortran common area are referenced as if they were individual
variables. Elements of what was in the second Fortran common area are
referenced by the structure name, B, with a suffix that specifies which
element is being referenced (i.e., B.bchar). In the single function, sub,
values for each variable are displayed before and after any changes. The
two character strings are re-initialized to upper case letters with the C
standard function strcpy and the two floating point variables are changed
by reversing the order of their individual digits.

If common is used in a Fortran program simply to allow the value of
a set of variables to be globally accessible, then declaring variables before
the main statement either individually or as part of a structure works just
fine. If common is manipulated in a Fortran program to align certain
variables in complex ways, or if a particular common area is not declared
identically throughout a program, then the best technique is to establish a
large shared data area such as a single long character string and then
manage it through specific user-designed code.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: COMPLEX

Fortran complex VARIABLE
C Primary struct
C Secondary NONE

The complex data type in Fortran is an ordered pair of real
numbers, the first of which is defined to be the “real” part and the second of
which is defined to be the “imaginary” part. The following Fortran program
declares a complex variable and a complex array and performs a
single complex addition.

 program main
 complex a, b(3), c
 a = (1.0, 2.0)
 b(1) = (3.0, 4.0)
 b(2) = (5.0, 6.0)
 b(3) = (7.0, 8.0)
 c = (0.0, 0.0)
 write (6,1) a, b, c
 1 format (1H , 5 (f3.1, ',', f3.1, 3x))
 c = a + b(2)
 write (6,1) a, b, c
 stop
 end
The program generates this display:

1.0,2.0 3.0,4.0 5.0,6.0 7.0,8.0 .0, .0
1.0,2.0 3.0,4.0 5.0,6.0 7.0,8.0 6.0,8.0
A C program that accomplishes the same function is as follows:

 main()
 {
 struct complex
 { double real;
 double imaginary;
 };
 struct complex a = { 1.0, 2.0 };

 struct complex b[3] = { 3.0 ,4.0, 5.0, 6.0, 7.0, 8.0};
 struct complex c = { 0.0, 0.0 };
 printf ("%3.1f,%3.1f %3.1f,%3.1f %3.1f,%3.1f"\
 " %3.1f,%3.1f %3.1f,%3.1f\n",
 a.real, a.imaginary,
 b[0].real,b[0].imaginary,
 b[1].real,b[1].imaginary,
 b[2].real,b[2].imaginary,
 c.real, c.imaginary);
 c.real = a.real + b[1].real;
 c.imaginary = a.imaginary + b[1].imaginary;
 printf ("%3.1f,%3.1f %3.1f,%3.1f %3.1f,%3.1f"\
 " %3.1f,%3.1f %3.1f,%3.1f\n",
 a.real, a.imaginary,
 b[0].real,b[0].imaginary,
 b[1].real,b[1].imaginary,
 b[2].real,b[2].imaginary,
 c.real, c.imaginary);
 return;
 }

C has no direct support for Fortran complex numbers. The C
example program illustrates one way to build a data structure like a Fortran
complex number and to explicitly program the rules for complex
number addition. Reference to both elements of the single complex
variable is accomplished by adding the .real or .imaginary suffix to the
variable name. Reference to any element of the complex array is
accomplished by extending the structure name to include the element
number (i.e., b[1]) and adding the .real or .imaginary suffix.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: CONTINUE

Fortran LABEL continue
C Primary ;, continue
C Secondary for

A major function of the Fortran continue is to mark the end of a
do loop. It is also used as the target for a go to statement. Finally, a
plain continue statement can appear wherever an executable statement
can appear and in such circumstances has no effect. The following
Fortran program demonstrates all three uses:

 program main
 integer i
 do 3 i = 1, 3, 1
 if (i .eq. 2) go to 2
 write (6,1) i
 1 format (1H , 'DO loop index I = ', i1)
 2 continue
 3 continue
 continue
 stop
 end
The program generates this display:

DO loop index I = 1
DO loop index I = 3
A C program that accomplishes the same function is as follows:

 main()
 {
 int i;
 for (i=1; i<=3; ++i) {
 if (i == 2)
 continue;
 else
 printf ("DO loop index I = %i\n", i);
 }

 ;
 return;
 }

The body of both programs is a loop in which the index ranges from one to
three. Within the loop, the value of the index is printed except when the
index has the value two. In Fortran, checking to see if the loop index
equals two eventually will cause a transfer of control to the first continue
statement and the do loop terminates at the second continue
statement. In C, when the loop index equals two, the continue statement
following the conditional if statement forces control to the bottom of the for
loop which is the first right curly brace (i.e., }). Finally, in Fortran a stand-
alone continue statement directly above the stop statement has no
effect. Similarly, in C, the semicolon directly above the return statement
has no effect.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: DATA

Fortran data VARIABLE / VALUE /
data ARRAY / VAL1, VAL2, ..., VALN /
data (A(I),I=1,3) / VAL1, VAL2, VAL3 /

C Primary =, {}
C Secondary NONE

The data statement is the means to initialize a variable or an array.
It can be thought of as a mass assignment operator and is very often used
to initialize large arrays to zero or blank. The following Fortran program
demonstrates several variants of the data statement.

 program main
 character carray(3), csingle*3
 integer iarray(3), isingle, i
 real rarray(3), rsingle
 data carray / 'a', 'b', 'c' /
 data csingle / 3Hefg /
 data iarray / 1, 2, 3 /
 data isingle / 4 /
 data (rarray(i), i = 1, 3) / 5.0, 6.0, 7.0 /
 data rsingle / 8.0 /
 write (6,1) carray, csingle,
 - iarray, isingle,
 - rarray, rsingle
 1 format (1H , 3a1, 1x, a3, 4i2, 4f4.1)
 stop
 end
The program generates this display:

abc efg 1 2 3 4 5.0 6.0 7.0 8.0
C program that accomplishes the same function is as follows:

 main()
 {
 char carray[4] = { 'a', 'b', 'c', '\0' };
 char *csingle = "efg";

 int iarray[3] = { 1, 2, 3 };
 int isingle = 4;
 float rarray[3] = { 5.0F, 6.0F, 7.0F };
 float rsingle = 8.0F;
 printf ("%s %s %d %d %d %d %3.1f %3.1f %3.1f %3.1f\n",
 carray, csingle,
 iarray[0], iarray[1], iarray[2], isingle,
 rarray[0], rarray[1], rarray[2], rsingle);
 return;
 }

Both programs initialize character, integer, and floating point arrays
and variables. In the C example program, single variables are simply
assigned a value, whereas values for each element of the arrays are listed
within pairs of curly braces (see also Chapter 6†). Note that unless
otherwise initialized, all static numeric variables and arrays are initialized to
zero, and all static pointers are initialized to null. That means that any
variable, array, or pointer that has static storage (i.e., is globally accessible
across all program units) are pre-initialized. Conversely, all automatic
variables, arrays, and pointers (i.e., local to a program unit) are not pre-
initialized and must be explicitly given a value.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: DIMENSION

Fortran dimension A (SIZE1, SIZE2, ..., SIZE7)
C Primary []
C Secondary for

Arrays are one of the few “data structures” available to the Fortran
programmer. Single-dimensioned arrays (vectors) and two dimensional
arrays (matrices or tables) are very common. Arrays of larger dimensions
are supported and but used to a lesser extent. The following Fortran
program establishes a character array and an integer array, initializes them,
and displays their value.

 program main
 character*3 carray(3)
 integer iarray(3,3), i, j
 data carray / 'abc', 'efg', 'ijk' /
 data iarray / 1, 4, 7,
 - 2, 5, 8,
 - 3, 6, 9 /
 do 2 i = 1, 3, 1
 write (6,1) carray(i), (iarray(i,j), j = 1,
3)
 1 format (1H , a3, 3i2)
 2 continue
 stop
 end
The program generates this display:

abc 1 2 3
efg 4 5 6
ijk 7 8 9
C program that accomplishes the same function is as follows:

 main()
 {
 char *carray[] = { "abc", "efg", "ijk" };
 int iarray[3][3] = { 1, 2, 3,

 4, 5, 6,
 7, 8, 9 };
 int i, j;
 for (i=0; i<3; i++) {
 printf ("%s", carray[i]);
 for (j=0; j<3; j++) {
 printf (" %d", iarray[i][j]);
 }
 printf ("\n");
 }
 return;
 }

Both programs establish and initialize a character array: carray in
Fortran is an array of three-character variables, and carray in C is an array
of character strings each initialized with three characters. Both programs
establish and initialize a 3-by-3 integer valued table called iarray. There is
a major difference between Fortran and C in terms of multidimensional
array storage. Tables in Fortran are stored in column-major order. Tables
in C are stored in row-major order. Fortran allows array indices to vary
between a lower and upper limit that the programmer can set. For
example, a ten element Fortran array can have an index that can range
from -4 to 5 if it was declared as

 dimension array(-4:5)
C does not directly support such a feature.

Furthermore, default array indices in Fortran range from 1 to the
number of elements in the array, while in C such indices range from 0 to
one less than the number of elements in the array. In other words, in C,
declaring an array as vector[3] establishes the following three elements:
vector[0], vector[1], and vector[2]; and declaring an array as table[5][10]
defines fifty elements ranging from table[0][0] to table[4][9]. Arrays can
also be declared without setting a size (i.e., int row[]). The actual length
would then be established when the array is initialized. The character
array carry in the C example program is exactly such an array: it is
declared without a specific length but inherits a length of three when the
three elements within the initialization braces are processed. Also,
elements of an array can be accessed through a pointer so that the last
element of an array declared as list[10] can be referenced as list[9] or

*(list+9) although the former is more common. Lastly, character arrays
need to declared with one more element that would normally be needed to
accommodate the end-of-string marker called the null character (i.e., the '\
0' character), which means that a string of a proper size to hold the word
Fortran needs to be declared char language[8]. Chapter 6† presents
additional details on the differences between arrays in Fortran and C.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: DO

Fortran do LABEL VARIABLE = N1, N2, N3
C Primary for
C Secondary continue, break, do/while, while

Along with the if statement, the Fortran do statement is likely to
be one of the most frequently used statements in the language. It is
regularly used to traverse an array applying a series of formula to each
element in turn. The following Fortran program exercises the do loop
construct with increasing, decreasing, and real indices.

 program main
 integer i
 integer total
 real x
 write (6,1)
 1 format (/ 1H , 'First loop ... increasing
integer' /)
 do 3 i = 1, 5, 1
 if (mod(i,2) .eq. 0) go to 3
 write (6,2) i
 2 format (1H , 'i index = ', i1)
 3 continue
 write (6,4)
 4 format (/ 1H , 'Second loop ... decreasing
integer' /)
 do 6 i = 5, 1, -2
 write (6,5) i
 5 format (1H , 'i index = ', i1)
 6 continue
 write (6,7)
 7 format (/ 1H , 'Third loop ... increasing
real' /)
 do 9 x = 1.0, 2.0, 0.5
 write (6,8) x
 8 format (1H , 'x index = ', f3.1)
 9 continue
 write (6,10)

 10 format (/ 1H , 'Fourth loop ... sum integers
(0,10)'/)
 total = 0
 do 11 i = 0, 10, 1
 total = total + i
 11 continue
 write (6,12) total
 12 format (1H , 'total = ', i2)
 stop
 end
The program generates this display:

First loop ... increasing integer
i index = 1
i index = 3
i index = 5
Second loop ... decreasing integer
i index = 5
i index = 3
i index = 1
Third loop ... increasing real
x index = 1.0
x index = 1.5
x index = 2.0
Fourth loop ... sum integers (0,10)
total = 55
A C program that accomplishes the same function is as follows:

 main()
 {
 int i;
 int total;

 float x;
 printf ("\nFirst loop ... increasing integer\n\n");
 for (i=1; i<=5; i++) {
 if ((i%2) == 0) continue;
 printf ("i index = %d\n", i);
 }
 printf ("\nSecond loop ... decreasing integer\n\n");
 for (i=5; i>=1; i-=2) {
 printf ("i index = %d\n", i);
 }
 printf ("\nThird loop ... increasing real\n\n");
 for (x=1.0F; x<=2.0F; x+=0.5F) {
 printf ("x index = %3.1f\n", x);
 }
 printf ("\nFourth loop ... sum integers (0,10)\n\n");
 for (i=0, total=0; i < 11; i++) total += i;
 printf ("for alternative ... total = %d\n", total);
 total = 0;
 i = 0;
 do
 {
 total += i;
 } while (++i < 11);
 printf ("do/while alternative ... total = %d\n",
 total);
 total = 0;
 i = 0;
 while (i < 11) {
 total += i;
 i++;
 }
 printf ("while alternative ... total = %d\n",
 total);
 return;
 }

It displays these results of three alternatives for the fourth loop:

for alternative ... total = 55
do/while alternative ... total = 55

while alternative ... total = 55
The Fortran and C version of the first three loops are very similar.

The last Fortran loop is programmed in several ways in the C example
program. The first is a “one-line do loop” in which the index and the
variable to hold the sum are initialized in the first argument and the sum is
performed after the last argument. The second is the C do/while construct
in which the content of the loop is executed until the loop index reaches
eleven. The third and final loop is a while loop in which the body of the
loop executes while the loop index is less than eleven.

Note that during the execution of the full for loop, the do/while loop, or
the full while loop, the loop can be escaped for a particular value of the
index or some datum with a continue statement or stopped with the break
statement. For example, in the following C program, each loop is fully
executed twice: once for an index value of one and the final time for an
index value of three.

 main()
 {
 int i;
 for (i=1; i<=5; i++) {
 if (i == 2) continue;
 if (i > 3) break;
 printf ("for loop %i\n", i);
 }
 i = 1;
 do
 {
 if (i == 2) continue;
 if (i > 3) break;
 printf ("do/while loop %i\n", i);
 } while (++i <= 5);
 i = 0;
 while (i <= 5) {
 i++;
 if (i == 2) continue;
 if (i > 3) break;
 printf ("while loop %i\n", i);
 }
 return;

 }

The Fortran counterpart to this C example program would have a
single do loop. Early in the loop there would be test of the value of the
index; and when it was equal to two, control would transfer to the terminal
continue of the do loop. In the middle of the loop there would be a second
test of the value of the index; and when it was greater than three, control
would transfer to a continue statement beyond the end of the terminal
continue of the do loop.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: DOUBLE PRECISION

Fortran double precision VARIABLE
C Primary double
C Secondary NONE

Fortran offers two forms of floating point support: real and
double precision. ANSI 77 Fortran states that double precision
offers “greater” precision than real but does not specify any measure of
precision for either. The following Fortran program creates a double
precision variable, array, and function and exercises these three
constructs.

 program main
 double precision variable
 double precision array(3)
 double precision farg
 double precision fvalue
 double precision fname
 variable = 1.0d0
 array(1) = 2.0d0
 array(2) = 3.0d0
 array(3) = 4.0d0
 farg = array(3)
 fvalue = fname (farg)
 write (6,1) variable, array, fvalue
 1 format (1H , 5f4.1)
 stop
 end
 double precision function fname (farg)
 double precision farg
 fname = farg + 1.0d0
 return
 end
The program generates this display:

1.0 2.0 3.0 4.0 5.0

A C program that accomplishes the same function is as follows:

 main()
 {
 double variable = 1.0;
 double array[3] = { 2.0, 3.0, 4.0 };
 double farg = array[2];
 double fvalue;
 double fname (double farg);
 fvalue = fname (farg);
 printf ("%3.1f %3.1f %3.1f %3.1f %3.1f\n",
 variable,array[0],array[1],array[2],fvalue);
 return;
 }
 double fname (double farg)
 {
 return farg + 1.0;
 }

Both programs initialize the variable, each array element, and the
function argument in very much the same way. Note that C requires the
type of the function and its argument to be declared in the main program in
a function prototype statement, while Fortran only requires the function –
not the argument – to be declared. Fortran specifies that double
precision constants should use the “d” exponent (i.e., 1.0d0) and
that real constants have no designated exponent. Conversely, C specifies
that double constants have no designated exponent but that float constants
should use an “F” suffix (i.e., 2.0F).

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: ELSE

Fortran else
C Primary else
C Secondary {}, ==, if

A major advantage of the ANSI 77 Fortran standard over the ANSI 66
standard was the specification of an “if...then...else” construct.
Without it, even moderately complicated control structures became a
jumble of go to statements. The following Fortran program includes
three forms of if statements – single outcome, dual outcome, and
compound:

 program main
 integer i, j
 i = 1
 j = 1
 if (i .eq. 1) then
 write (6,1)
 1 format (1H , 'This line will print (#1).')
 else
 endif
 if (i .eq. 1) then
 write (6,2)
 2 format (1H , 'This line will print (#2).')
 else
 write (6,3)
 3 format (1H , 'This line will NOT print (#2).'
)
 endif
 if (i .eq. 1) then
 write (6,4)
 4 format (1H , 'This line will print (#3a).')
 if (j .eq. 1) then
 write (6,5)
 5 format (1H , 'This line will print (#3b).'
)
 else
 write (6,6)

 6 format (1H , 'This line will NOT print
(#3b).')
 endif
 else
 write (6,7)
 7 format (1H , 'This line will NOT print
(#3a).')
 endif
 stop
 end
The program generates this display when the variables i and j are both
equal to one:

This line will print (#1).
This line will print (#2).
This line will print (#3a).
This line will print (#3b).
Under other conditions, the program would produce the following results:

Var Print (or not) Specific Messages

i j will 1 will 2 not 2 will 3a not 3a will 3b not 3b

1 1 print print print print
1 2 print print print print
2 1 print print
2 2 print print

A C program that accomplishes the same function is as follows:

 main()
 {
 int i = 1;
 int j = 1;
 if (i == 1)
 printf ("This line will print (#1).\n");
 if (i == 1)
 printf ("This line will print (#2).\n");

 else
 printf ("This line will NOT print (#2).\n");
 if (i == 1) {
 printf ("This line will print (#3a).\n");
 if (j == 1)
 printf ("This line will print (#3b).\n");
 else
 printf ("This line will NOT print (#3b).\n");
 }
 else
 printf ("This line will NOT print (#3a).\n");
 return;
 }

The first if has a single outcome because no action is associated
with its corresponding else statement. The second if has two
outcomes depending on the value of the decision variable i, and both the
Fortran and C code are very similar in design. The third if is compound:
the outer part – 3a – turns on the value of the decision variable i, and the
inner part – 3b – depends on the value of the decision variable j. In the
Fortran example program, both parts of this compound if are written with
indentation to illustrate the effect of the two if...then statements. In
the C example program, both parts of the compound if are likewise written
with indentation, but the curly braces surrounding the full contents of the
outer if are critical. Only these braces associate the last else statement
with the beginning of the outer if statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: ELSE IF

Fortran else if (CONDITION) then
C Primary else if
C Secondary NONE

Three-way decision paths are not an uncommon requirement of a
program. They cover situations in which a program must take one action if
a key decision variable has a particular value, another action if not, and a
third action to cover error conditions. In Fortran, those three paths are
provided by the if statement, the else if statement, and the else
statement, respectively. The following Fortran program exercises these
three statements.

 program main
 integer i
 do 4 i = 1, 3, 1
 if (i .eq. 1) then
 write (6,1) i
 1 format (1H , 'SELECTED: i = ', i1)
 else if (i .eq. 2) then
 write (6,2) i
 2 format (1H , 'SELECTED: i = ', i1)
 else
 write (6,3) i
 3 format (1H , 'PASSED (print only on last
cycle): "
 - 'i = ', i1)
 endif
 4 continue
 stop
 end
The program generates this display:

SELECTED: i = 1
SELECTED: i = 2
PASSED (print only on last cycle): i = 3
A C program that accomplishes the same function is as follows:

 main()
 {
 int i;
 for (i=1; i<=3; i++) {
 if (i == 1)
 printf ("SELECTED: i = %d\n", i);
 else if (i == 2)
 printf ("SELECTED: i = %d\n", i);
 else
 printf ("PASSED (print only on last cycle): "
 "i = %d\n", i);
 }
 return;
 }

Both Fortran and C provide very similar code constructs to implement
the else if statement. In fact, replacing the Fortran do loop with a C
for loop and the Fortran write and format statements with C’s printf
completes nearly all of the translation between the two example programs.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: END

Fortran end
C Primary exit
C Secondary abort, EXIT_SUCCESS, return

Terminating every program unit in a Fortran program is the end
statement. It is preceded by a stop in the main program and by a
return in functions and subroutines. The following Fortran program
demonstrates the end statement.

 program main
 integer i
 integer farg
 integer fvalue
 integer fname
 i = 1
 farg = i
 fvalue = fname (farg)
 write (6,1) i, fvalue
 1 format (1H , i1, 1x, i1)
 stop
 end
 integer function fname (farg)
 integer farg
 fname = farg + 1
 return
 end
The program generates this display:

1 2
A C program that accomplishes the same function is as follows:

 #include <stdlib.h>
 main()
 {
 int i = 1;
 int farg = i;

 int fvalue;
 int fname (int farg);
 fvalue = fname (farg);
 printf ("%d %d\n", i, fvalue);
 exit (EXIT_SUCCESS);
 }
 int fname (int farg)
 {
 return farg + 1;
 }

Note that in the C main program, the effect of the Fortran stop-and-
end statement pair is accomplished with C’s exit statement. In C, the exit
statement not only terminates the program but flushes all file buffers,
closes all files, and transmits the value of its argument to the host operating
system. That argument typically takes on the value EXIT_SUCCESS or
EXIT_FAILURE, which are defined in the C standard file stdlib.h.
EXIT_SUCCESS communicates a successful program completion to the
host operating system, and EXIT_FAILURE communicates program failure
to the host operating system. An alternative to the exit statement is the C
abort function call, which terminates a program immediately without
necessarily flushing file buffers and/or closing files. Lastly, a C main
program does not have to invoke the exit function: it can use the return
statement, with or without an argument, in its place. In fact, the closing
right curly brace, in the absence of a return statement, will perform the
same as a return statement without an argument.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: END IF

Fortran end if
C Primary }
C Secondary ==, {}, if

A major advantage of the ANSI 77 Fortran standard over the ANSI 66
standard was the specification of the “if...then” and the
“if...then...else” constructs. The end if Fortran statement
terminates the if part of both forms of “if...then” constructs.
Without these kinds of constructs, even moderately complicated control
structures became a jumble of go to statements. The following Fortran
program includes three forms of if statements: single outcome, dual
outcome, and compound:

 program main
 integer i, j
 i = 1
 j = 1
 if (i .eq. 1) then
 write (6,1)
 1 format (1H , 'This line will print (#1).')
 endif
 if (i .eq. 1) then
 write (6,2)
 2 format (1H , 'This line will print (#2).')
 else
 write (6,3)
 3 format (1H , 'This line will NOT print (#2).'
)
 endif
 if (i .eq. 1) then
 write (6,4)
 4 format (1H , 'This line will print (#3a).')
 if (j .eq. 1) then
 write (6,5)
 5 format (1H , 'This line will print (#3b).'
)
 else

 write (6,6)
 6 format (1H , 'This line will NOT print
(#3b).')
 endif
 else
 write (6,7)
 7 format (1H , 'This line will NOT print
(#3a).')
 endif
 stop
 end
The program generates this display when the variables i and j are both
equal to 1:

This line will print (#1).
This line will print (#2).
This line will print (#3a).
This line will print (#3b).
Under other conditions, the program would produce the following results:

Var Print (or not) Specific Messages

i j will 1 will 2 not 2 will 3a not 3a will 3b not 3b

1 1 print print print print
1 2 print print print print
2 1 print print
2 2 print print

A C program that accomplishes the same function is as follows:

 main()
 {
 int i = 1;
 int j = 1;
 if (i == 1)
 printf ("This line will print (#1).\n");
 if (i == 1)

 printf ("This line will print (#2).\n");
 else
 printf ("This line will NOT print (#2).\n");
 if (i == 1) {
 printf ("This line will print (#3a).\n");
 if (j == 1)
 printf ("This line will print (#3b).\n");
 else
 printf ("This line will NOT print (#3b).\n");
 }
 else
 printf ("This line will NOT print (#3a).\n");
 return;
 }

The first if has a single outcome because no action is associated
with its corresponding else statement. The second if has two
outcomes depending on the value of the decision variable i, and both the
Fortran and C code are very similar in design. The third if is compound:
the outer part – 3a – turns on the value of the decision variable i, and the
inner part – 3b – depends on the value of the decision variable j. In the
Fortran example program, both parts of this compound if are written with
indentation to illustrate the effect of the two if...then statements. In
the C example program, both parts of the compound if are likewise written
with indentation, but the curly braces surrounding the full contents of the
outer if are critical. Only these braces associate the last else statement
with the beginning of the outer if statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: ENDFILE

Fortran endfile (unit=VAR, iostat=VAR, err=LAB)
endfile NUMBER

C Primary NONE
C Secondary break, exit, fclose, feof, fflush,

fgetc, fopen, fprintf, fputc, fscanf,
L_tmpnam, remove, rename, perror, tmpnam

When needed, files can be truncated with the endfile Fortran
statement. Although the endfile statement can be applied to any file
type, it is much more common to use this statement with sequential rather
than direct access files. The following Fortran program creates a file,
populates it with five records, and then truncates the file after the third
record:

 program main
 integer output, error, records, input
 character*24 line
 input = 7
 output = 8
 open (unit=output, access='SEQUENTIAL',
 - file='endfile.dat', form='FORMATTED',
 - iostat=error, status='NEW')
 if (error .ne. 0) then
 write (6,1)
 1 format (1H , 'Open of [endfile.dat] for ',
 - 'output failed!')
 go to 20
 end if
 records = 0
 write (6,2)
 2 format (/ 1H , 'Write five records to output
file.')
 do 5 i = 1, 5, 1
 records = records + 1
 write (output,3) records
 3 format ('Record number ', i1, ' read.')
 write (6,4) records

 4 format (1H , 'Record number ', i1, '
written.')
 5 continue
 close (unit=output, iostat=error,
status='KEEP')
 if (error .ne. 0) then
 write (6,6)
 6 format (1H , 'Close of [endfile.dat] after
',
 - 'output failed!')
 go to 20
 end if
 open (unit=input, access='SEQUENTIAL',
 - file='endfile.dat', form='FORMATTED',
 - iostat=error, status='OLD')
 if (error .ne. 0) then
 write (6,7)
 7 format (1H , 'Open of [endfile.dat] for ',
 - 'input failed!')
 go to 20
 end if
 write (6,8)
 8 format (/ 1H , 'Read three records (out of
five).')
 do 11 i = 1, 3, 1
 read (input,9) line
 9 format (a24)
 write (6,10) line
 10 format (1H , a24)
 11 continue
 write (6,12)
 12 format (/ 1H , 'Truncate the file.')
 endfile (unit=input, iostat=error)
 if (error .ne. 0) then
 write (6,13)
 13 format (1H , 'Truncation of [endfile.dat]
',
 - 'failed!')
 go to 20
 end if

 write (6,14)
 14 format (/ 1H , 'Rewind the file.')
 rewind (unit=input, iostat=error)
 if (error .ne. 0) then
 write (6,15)
 15 format (1H , 'Rewind of [endfile.dat]
failed!')
 go to 20
 end if
 write (6,16)
 16 format (/ 1H ,'Read until EOF (i.e., three
records).')
 do 17 i = 1, 32767, 1
 read (input,9,end=18) line
 write (6,10) line
 17 continue
 18 continue
 close (unit=input, iostat=error, status='KEEP')
 if (error .ne. 0) then
 write (6,19)
 19 format (1H , 'Close of [endfile.dat] after
',
 - 'input failed!')
 go to 20
 end if
 20 continue
 stop
 end
The program creates this data file:

Record_number_1_read.
Record_number_2_read.
Record_number_3_read.
It also generates this display:

Write five records to output file.
Record number 1 written.
Record number 2 written.
Record number 3 written.

Record number 4 written.
Record number 5 written.
Read three records (out of five).
Record number 1 read.
Record number 2 read.
Record number 3 read.
Truncate the file.
Rewind the file.
Read until EOF (i.e., three records).
Record number 1 read.
Record number 2 read.
Record number 3 read.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 #include <stdlib.h>
 #include <stddef.h>
 main()
 {
 FILE *output;
 int error;
 int records;
 int i;
 FILE *input;
 char *line;
 int bytes;
 int items;
 long position;
 long characters;
 int c;
 FILE *temp;
 char tempfile[L_tmpnam];
 if ((output = fopen ("endfile.dat","w")) == NULL) {
 perror ("Open of [endfile.dat] for "
 "output failed!");
 exit (EXIT_FAILURE);

 }
 printf ("\nWrite five records to output file.\n");
 records = 0;
 for (i = 0; i < 5; i++) {
 records = ++records;
 fprintf (output, "Record_number_%i_read.\n",
 records);
 printf ("Record number %d written.\n",records);
 }
 if ((error = fclose (output)) == EOF) {
 perror ("Close of [endfile.dat] after "
 "output failed!\n");
 exit (EXIT_FAILURE);
 }
 if ((input = fopen ("endfile.dat", "r")) == NULL) {
 perror ("Open of [endfile.dat] for "
 "input failed!");
 exit (EXIT_FAILURE);
 }
 printf ("\nRead three records (out of five).\n");
 position = 0;
 for (i = 0; i < 3; i++) {
 items = fscanf (input, "%s%n", line, &bytes);
 printf ("%s\n", line);
 position += bytes;
 }
 printf ("\nTruncate the file at byte number %ld.\n",
 position);
 if ((temp = fopen (tmpnam(tempfile),"w")) == NULL) {
 perror ("Can not open a temporary file!\n");
 exit (EXIT_FAILURE);
 }
 printf ("... temporary file [%s] is open ...\n",
 tempfile);
 rewind (input);
 for (characters=0;characters<=position;characters++) {
 c = fgetc (input);
 fputc (c, temp);
 }
 printf ("... %ld bytes transferred ...\n",

 position);
 if ((error = fclose (input)) == EOF) {
 perror ("Close of [endfile.dat] after "
 "copy failed!\n");
 exit (EXIT_FAILURE);
 }
 if ((error = remove ("endfile.dat")) != 0) {
 perror ("Remove of [endfile.dat] failed]!\n");
 exit (EXIT_FAILURE);
 }
 printf ("... original [endfile.dat] "
 "file removed ...\n");
 if ((error = fflush (temp)) != 0) {
 perror ("Can not flush "
 "temporary file buffer!\n");
 exit (EXIT_FAILURE);
 }
 if ((error = fclose (temp)) == EOF) {
 perror ("Can not close temporary file!\n");
 exit (EXIT_FAILURE);
 }
 if ((error=rename (tempfile,"endfile.dat")) != 0) {
 perror ("Rename of temp to "
 "[endfile.dat] failed!\n");
 exit (EXIT_FAILURE);
 }
 printf ("... [%s] file renamed to "
 "[endfile.dat] ...\n",tempfile);
 if ((input = fopen ("endfile.dat","r")) == NULL) {
 perror ("Open of [endfile.dat] for "
 "input failed!");
 exit (EXIT_FAILURE);
 }
 printf ("\nRead until EOF (i.e., three records).\n");
 for (i = 0; i < 32767; i++) {
 items = fscanf (input, "%s%n", line, &bytes);
 if ((error = feof (input)) == 0)
 printf ("%s\n", line);
 else
 break;

 }
 if ((error = fclose (input)) == EOF) {
 perror ("Close of [endfile.dat] after "
 "input failed!\n");
 exit (EXIT_FAILURE);
 }
 exit (EXIT_SUCCESS);
 }

The C code generates this display:

Write five records to output file.
Record number 1 written.
Record number 2 written.
Record number 3 written.
Record number 4 written.
Record number 5 written.
Read three records (out of five).
Record_number_1_read.
Record_number_2_read.
Record_number_3_read.
Truncate the file at byte number 65.
... temporary file [NAME] is open ...
... 65 bytes transferred ...
... original [endfile.dat] file removed ...
... [NAME] file renamed to [endfile.dat] ...
Read until EOF (i.e., three records).
Record_number_1_read.
Record_number_2_read.
Record_number_3_read.

Both programs create the primary data file called endfile.dat in such a
way that the file is certain to be empty (i.e., Fortran’s open status=NEW
and C’s fopen keyword w). If the file could not be opened by the C
example program, the perror function will prefix the standard C error
message with the user-specified string given as perror’s argument. Then
the C example program would terminate and inform the host operating
system (through the EXIT_FAILURE argument to the exit function) that the

program did not complete normally.
Five records are written into the file. C uses the fprintf library

function to write into a file; the syntax of this statement is almost identical
to the printf library function that has been used throughout C example
programs in this chapter.

The file is then closed, re-opened for input, and positioned to the end
of the third record. In the C program example, the fscanf standard function
is used to read the file. As it reads each line, it updates two variables:
items records the number of variables read, and bytes records the number
of bytes read. The variable position is used to keep a running total of the
number of bytes that comprise that first three lines of the file.

The remaining part of the Fortran example program is
straightforward: the file is truncated with the endfile statement,
repositioned to the beginning of the file by the rewind statement, and the
file is read and displayed to the end-of-file mark (i.e., three records).

C has no direct counterpart to the Fortran endfile statement.
Where the Fortran program was able to deal only with the file being
truncated, the C program has to shorten the file by copying a portion of the
original file to a temporary file and renaming that temporary file. The
temporary file is actually a permanent file created by the fopen C standard
function. It is temporary in the sense that its name is generated by the C
standard function tmpnam, which makes up a name from one to L_tmpnam
characters in length. After being rewound, the input file is read, byte-by-
byte, from the beginning to the end of the third record and then written to
the temporary file. Incidentally, processing a file byte-by-byte with the
fgetc and fputc C standard functions is very common in C programs. The
original file is then deleted with the remove C standard function. All data is
then force-written to the temporary file with the fflush C standard function,
the file is closed with fclose, given the name of the original input file by the
rename function, and opened for input with the fopen function.

Reading the file line-by-line to the end is accomplished by the fscanf
and feof C standard functions: fscanf reads one record at a time from a
file, and feof checks if the file has reached the end-of-file mark. Finally, in
both example programs, the file is closed.

Emulating the Fortran endfile statement in the manner of the C
example program is not very convenient, but no specific C statement exists
that will truncate a file at an arbitrary point.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: ENTRY

Fortran entry NAME (ARGUMENTS)
C Primary NONE
C Secondary &, void

Subroutines and functions can be written with multiple entrances and
multiple exits. Over the years, it has become common in Fortran
programming practice to design code so that each subprogram has one
entrance and one exit. However, the entry statement can be used to
provide several ways into a subprogram. The following Fortran program
uses one additional entry point for a subroutine and a function:

 program main
 integer i
 integer j
 integer entryb
 integer funb
 do 2 i = 1, 2, 1
 if (i .eq. 1) then
 call entrya (i, j)
 else
 j = entryb (i)
 endif
 write (6,1) i, j
 1 format (1H , 'Index i = ', i1, ' and j = ',
i1)
 2 continue
 stop
 end
 subroutine suba (i, j)
 integer i, j
 j = i + 1
 entry entrya (i, j)
 j = i + 2
 return
 end
 integer function funb (i)
 integer i, entryb

 funb = i + 3
 entry entryb (i)
 entryb = i + 4
 return
 end
The program generates this display:

Index i = 1 and j = 3
Index i = 2 and j = 6
A C program that accomplishes the same function is as follows:

 main()
 {
 int i;
 int j;
 void suba (int i, int *j);
 void entrya (int i, int *j);
 int funb (int i);
 int entryb (int i);
 for (i=1; i<=2; i++) {
 if (i == 1) {
 entrya (i, &j);
 }
 else
 j = entryb (i);
 printf ("Index i = %i and j = %i\n", i, j);
 }
 return;
 }
 void suba (int i, int *j)
 {
 *j = i + 1;
 entrya (i, j);
 return;
 }
 void entrya (int i, int *j)
 {
 *j = i + 2;
 return;

 }
 int funb (int i)
 {
 return i + 3;
 }
 int entryb (int i)
 {
 return i + 4;
 }

No C statement directly corresponds to the Fortran entry
statement. In the C example program, two Fortran subprograms (each
with an entry statement) had to be expanded into four separate
functions. C’s counterpart to the Fortran subroutine suba had to include
an explicit call to a separate function, entrya, in order to emulate the first
entry statement in the Fortran example program. Fortran’s function
funb had to be rewritten as a C function with the same name to handle
the main role of the original function; and a second C function, entryb, had
to be created to perform the role of the second entry statement in the
Fortran example program. These two example programs come as close
as possible to being complimentary, given the fact that C has no statement
matching the Fortran entry statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: EQUIVALENCE

Fortran equivalence (VARIABLE, ARRAY(element))
equivalence (A(elementI),B(elementJ))

C Primary *, &, #define, union
C Secondary NONE

Programmers have gone to great lengths to reduce the physical
memory requirements of their programs. In some circumstances, data
storage has to be kept to a minimum in order to allow the program to run in
a restricted execution environment. Even in large, virtual memory based
execution environments, programs are made as small as possible to
improve performance. A specific Fortran statement – equivalence – is
often used to help reduce a program’s physical memory requirements.
The following Fortran example program uses the equivalence
statement:

 program main
 integer i, iarray(3), jarray(2)
 real r, x
 equivalence (i, iarray(1))
 equivalence (iarray(2), jarray(1))
 equivalence (r, x)
 i = 1
 iarray(2) = 2
 jarray(2) = 3
 r = 4.56
 write (6,1) i, iarray, jarray, r, x
 1 format (1H , i2
 - / 1H , 3i2
 - / 1H , 2x, 2i2
 - / 1H , 1x, f5.2, 1x, f5.2)
 stop
 end
The program generates this display:

1
1 2 3

 2 3
 4.56 4.56
A C program that accomplishes the same function is as follows:

 #define i iarray[0]
 main ()
 {
 int iarray[3] = { 1, 2, 3 };
 int *jarray;
 union { float r; float x; } real;
 printf (" %i\n", i);
 printf (" %i %i %i\n",
 iarray[0], iarray[1], iarray[2]);
 jarray = &iarray[1];
 printf (" %i %i\n",
 jarray[0], jarray[1]);
 real.r = 4.56F;
 printf (" %5.2f %5.2f\n", real.r, real.x);
 return;
 }

Three different kinds of equivalence statements are
demonstrated in the example programs. In the first equivalence
statement, the simple variable i is paired with the first element of the
iarray array showing how a variable can overlay an arbitrary element of
an array. In the C example program, this is accomplished by the #define
statement, which tells the compiler to replace the string i with iarray[0]
wherever it occurs. Here, Fortran allows a variable to “overlay” the
memory location of an array element, and C establishes a synonym linking
two variable names.

In the second equivalence statement, two arrays are tied
together: jarray overlaps the last two elements of iarray. In the C
example program, iarray is defined as a three-element array, and jarray is
only defined as a pointer. Just before jarray is printed, it is initialized to the
memory address of the second element of iarray with the statement jarray
= &iarray[1]. Recall that a pointer is a variable that holds the memory
address of a data object. In this case, jarray is a pointer to the memory
address of an integer data object because it was declared with the
statement int *jarray. When the & operator is used in the jarray =

&iarray[1] assignment statement, it calculates the memory address of the
second element of the iarray array. Then that memory address is
assigned to jarray. Once the first element of jarray is linked to the second
element of iarray, all other elements of both arrays are likewise aligned so
that iarray[2] is the same as jarray[1]. Here, Fortran and C truly establish
two variables that occupy the same memory locations.

In the third and last equivalence statement, two floating point
variables – r and x – are joined. In the C example program, this is
accomplished with the union statement. A union is similar to C’s struct
data structure that has been used often in this chapter; but where
elements of a struct are aligned sequentially in storage, elements of a
union overlay each other in storage. By that definition, both real.r and
real.x are different names for the same storage location.

Fortran and C both have mechanisms to permit two variables to
occupy the identical storage location. Fortran programmers have used the
equivalence statement in hundreds of ways to reduce programs’
memory requirements. C’s tools – #define statements, pointers, and
unions – can go a long way to provide the Fortran programmer with tools to
establish an equivalence among variables. Also, Chapter 6†
introduces C’s ability to dynamically allocate memory for arrays of arbitrary
data type and dimensions.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: EXTERNAL

Fortran external SUBPROGRAM_NAME
C Primary NONE
C Secondary abs

ANSI standard Fortran defines the syntax of the language and the
names and specifications for a series of support functions (i.e., abs,
sqrt, sin, etc.). Many Fortran compilers extend the ANSI standard
defined support functions with additional tools to facilitate certain ways of
manipulating data. Therefore, a program that uses a particular name for a
user-written subprogram on one computer system may find that that name
conflicts with a system-supplied support function on another computer
system. To guard against that possibility, the user-written subprogram can
be named in a Fortran external function to explicitly inform the compiler
that the user-written subprogram should be invoked rather than the system-
supplied support function. The following Fortran program explicitly
declares a user-written subroutine, a user-written function, and redefines a
system-supplied support function:

 program main
 integer i
 integer j
 integer fun
 integer iabs
 external sub, fun, iabs
 do 2 i = 1, 3, 1
 if (i .eq. 1) call sub (i, j)
 if (i .eq. 2) j = fun (i)
 if (i .eq. 3) j = iabs (i)
 write (6,1) i, j
 1 format (1H , 'Index i = ', i1, ' j = ', i1)
 2 continue
 stop
 end
 subroutine sub (i, j)
 integer i, j
 j = i + 3
 return

 end
 integer function fun (i)
 integer i
 fun = i + 4
 return
 end
 integer function iabs (i)
 integer i
 iabs = i + 5
 return
 end
The program generates this display:

Index i = 1 j = 4
Index i = 2 j = 6
Index i = 3 j = 8
A C program that accomplishes the same function is as follows:

 main()
 {
 int i;
 int j;
 void sub (int i, int *j);
 int fun (int i);
 int abs (int i);
 for (i = 1; i <= 3; i++) {
 if (i == 1)
 sub (i, &j);
 if (i == 2)
 j = fun (i);
 if (i == 3)
 j = abs (i);
 printf ("Index i = %i j = %i\n", i, j);
 }
 return;
 }
 void sub (int i, int *j)
 {
 *j = i + 3;

 return;
 }
 int fun (int i)
 {
 return i + 4;
 }
 int abs (int i)
 {
 return i + 5;
 }

Declaring sub and fun as external subprograms in the
Fortran example program guarantees that if the host computer system has
functions by those names, the user-written versions will be executed. That
same effect is achieved by declaring those two subprograms after all
#include statements, if any, in the C example program.

Both programs redefine the respective Fortran- and C- supplied
functions that compute the absolute value of an integer. The user-supplied
Fortran iabs function and C abs function do not return the absolute value
of their argument but return the value of their argument incremented by
five.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: FORMAT

Fortran format (SPECIFICATIONS)
C Primary printf
C Secondary #define, fprintf, fscanf, scanf, sizeof,

sprintf, sscanf, va_end, va_list,
va_start, vfprintf, vprintf, vsprintf

A large percentage of the source code in any given Fortran program
is dedicated to preparing and formatting data for input and output.
Fortran’s primary mechanism to edit and layout data for input and output is
the format statement. The following Fortran program exercises a wide
variety of format specifications:

 program main
 character*5 fc
 double precision fd
 real fe
 real ff
 real fg
 integer fi
 character*37 format14
 integer ichar0
 fc = 'abcde'
 fd = 1.23d0
 fe = 4.56
 ff = 7.89
 fg = 10.11
 fi = 1213
 format14 = '(1H , 7x, a_, 1x, f10._, 1x,
i10._)'
 write (6,1) fc, fc, fc, fc
 1 format (1H , ' [', a, ']', ' [', a4,
']',
 - ' [', a5, ']', ' [', a6,
']')
 write (6,2) fd, fd, fd
 2 format (1H , d10.3, 1x, sp, d10.3, s, 1x, 3p,
d10.2)

 write (6,3) fe, fe, fe, fe
 3 format (1H , e10.3, 1x, sp, e10.3, s, 1x, 3p,
e10.2,
 - 0p, 1x, e10.3e2)
 write (6,4) ff, ff, ff
 4 format (1H , f10.2, 1x, sp, f10.2, s, 1x, 3p,
f10.2)
 write (6,5) fg, fg, fg, fg
 5 format (1H , 4x, g10.3, 1x, sp, g10.3, s, 1x,
3p,
 - g10.2, 0p, 1x, g10.3e2)
 write (6,6)
 6 format (1H , '1st string', 1x, 10h2nd string)
 write (6,7)
 7 format (1H , 'single space')
 write (6,8)
 8 format (1H , 'NO ADVANCE (overprint)')
 write (6,9)
 9 format (1H+, 'no advance')
 write (6,10)
 10 format (1H0, 'double space')
 write (6,11)
 11 format (1H1, 'new page (top of form)')
 write (6,12) fi, fi, fi
 12 format (1H , i10, 1x, sp, i10, s, 1x, i10.5)
 write (6,13)
 13 format (tr16, 'twenty', tl14, 'ten')
 ichar0 = ichar ('0')
 format14(13:13) = char (ichar0 + 3)
 format14(24:24) = char (ichar0 + 4)
 format14(35:35) = char (ichar0 + 5)
 write (6,format14) fc, ff, fi
 stop
 end
The program generates this display:

 [abcde] [abcd] [abcde] [abcde]
 .123D+01 +.123D+01 123.D-02
 .456E+01 +.456E+01 456.E-02 .456E+01
 7.89 +7.89 7890.00

 10.1 +10.1 10. 10.1
1st string 2nd string
single space
no advance (overprint)
double space
new page (top of form)
 1213 +1213 01213
 ten twenty
 abc 7.8900 01213
A C program that accomplishes the same function is as follows:

 main ()
 {
 char cc[5] = "abcde";
 double cd;
 float ce;
 float cf;
 float cg;
 int ci;
 int i;
 int j;
 int k;
 cd = 1.23;
 ce = 4.56F;
 cf = 7.89F;
 cg = 10.11F;
 ci = 1213;
 printf (" [%s] [%.4s] [%.5s] [%6.5s]\n",
 cc, cc, cc, cc);
 printf ("%10.2e %+10.2e %10.2e\n", cd, cd, cd);
 printf ("%10.2E %+10.2E %10.2E %10.2E\n",
 ce, ce, ce, ce);
 printf ("%10.2f %+10.2f %10.2f\n",
 cf, cf, 1000.0F*cf);
 printf ("%10.2g %+10.2g %10.2g %10.2g\n",
 cg, cg, cg, cg);
 printf ("1st string 2nd string\n");
 printf ("single space\n");

 printf ("NO ADVANCE (overprint)\r");
 printf ("no advance\n");
 printf ("\ndouble space\n");
 printf ("\fnew page (top of form)\n");
 printf ("%10i %+10i %10.5i\n", ci, ci, ci);
 printf (" twenty\r ten\n");
 i = 3;
 j = 4;
 k = 5;
 printf (" %.*s %10.*f %10.*i\n",
 i, cc, j, cf, k, ci);
 return;
 }

The program generates this display:

 [abcde] [abcd] [abcde] [abcde]
 1.23e+000 +1.23e+000 1.23e+000
 4.56E+000 +4.56E+000 4.56E+000 4.56E+000
 7.89 +7.89 7890.00
 10 +10 10 10
1st string 2nd string
single space
no advance (overprint)
double space
new page (top of form)
 1213 +1213 01213
 ten twenty
 abc 7.8900 01213

Each of the fourteen format statements in the Fortran example
program demonstrate a new feature of editing data for output.

Character data are manipulated in the first format with the a
format specification. Several variations appear that force the display of a
five character string into fields of different widths. If the Fortran field width
is less than the string length, it is left-justified and truncated; and if the
width is more than the string length, it is right-justified and blank-padded on
the left. C’s %width.precision syntax does the same thing. If width is not
specified, then the field is left-justified and the string is truncated; if

precision and width is given, then the string is right-justified in a field as
long as the specified width.

A very significant difference appears at the end of the first C printf
specification: the \n string. Fortran generates a line feed at the end of
every format specification. There is no way within the bounds of ANSI
standard Fortran to stop that line feed from occurring. C, on the other
hand, never automatically generates a line feed at the end of a printf
specification: the programmer explicitly forces a line feed at a particular
point in a printf specification by including the \n string. In effect, Fortran
controls the final line feed in a format specification, while in C the
programmer controls any and all line feeds in a printf specification. This
extra control is very valuable since the programmer can build a complicated
print or display line from many small printf statements, each being
extended until finally the line feed character is specified.

Floating point data can be processed by a several Fortran and C
output specifications. The second Fortran format employs the double
precision format specifier, sign control, and scaling. C matches Fortran’s
d format with an e specifier and can explicitly ask for the sign to be printed
with the addition symbol flag, as in the %+10.2e specifier. Sign printing
control in C is on a per field basis, rather than like Fortran’s sign printing
where sp or ss would start a certain way of handling signs for one or
more variables processed in a format statement and s would have to
be used to revert to default processing.

The third Fortran format uses the e format specifier, which is
most closely aligned with C’s E printf specifier. The fourth Fortran
format exercises the Fortran f format, which is identical in most
respects to the f specifier of C. Floating point data can also be processed
by Fortran’s and C’s g output specifier. Both languages have very detailed
rules about the form of g specifier output, given the magnitude of the
floating point number and the width and precision of the g field. Some of
these rules are covered in Chapter 8.†

Literal data are easily printed by both languages. Fortran allows the
literal to be enclosed in single quotation marks or following a character
count Hollerith prefix, as in the sixth format. C has one method; it
encloses literals in double quotation marks.

Line spacing is shown in formats 7, 8, 9, and 10 in the Fortran
example program. Single spacing is the default for a Fortran format

statement. It’s normal to see a single line feed – the \n string – terminating
the format specification in a C printf statement. Overprinting is controlled
in Fortran with the 1H+ specifier as seen in the ninth format statement.
C allows this practice through the use of the \r specifier: \n implies a
carriage return and a line feed where \r implies just the carriage return. A
1H0 Fortran format specifier forces double spacing, which can be
accomplished in C by beginning the format specification with the \n string to
force a blank line. Page control is implemented in Fortran with the 1H1
specifier and in C with the \f string.

Integer data are printed in Fortran with the i specifier and in C with
either the i or d specifier. The twelfth format demonstrates simple
output, signed output, and zero-padded output of an integer. An identical
effect is achieved in C with the simple %10i specifier, the addition symbol
flag in the %+10i specifier, and explicitly setting a field width and precision
value in the %10.5i specifier. There is no difference between the i and d in
a C printf statement: two specifiers that accomplish the same thing exist in
C due to historical reasons in the development of the language.

Moving data right and left within a single line of output is the function
of Fortran’s tr and tl specifiers. C has no direct counterpart. The
effect of the thirteenth format in the Fortran example program is
achieved in the C example program through spacing of the literal string and
using the \r specifier (i.e., \r generates a carriage return without a line feed).

Run-time formatting is a method within Fortran to adapt the
appearance of a display to conditions encountered during execution. The
final format statement in the Fortran example program sets the width of
each field when the program is running. The final printf statement in the C
example program uses an asterisk to hold the place of the field width and
an additional variable (i.e., the i, j, and k variables) to define the field width
while the program is running.

C provides an additional feature that inserts a variable name
automatically into a display. In Fortran, a variable name can be linked to
its value only through the efforts of the programmer, such as in the
following:

 program main
 integer i
 integer j
 character a

 i = 1
 j = 2
 a = 'i'
 write (6,1) a, i
 1 format (1H , a, ' = ', i1)
 a = 'j'
 write (6,1) a, j
 stop
 end
The program generates this display:

i = 1
j = 2
A C program that accomplishes the same function is as follows:

 #define format1(x) printf (#x" = %d\n", x)
 main()
 {
 int i = 1;
 int j = 2;
 format1 (i);
 format1 (j);
 return;
 }

The number sign, #, is used in the definition of the format1 statement
function to copy the variable name into the display. Consequently, when
the function is exercised with the variable i or j as its single argument, the
function shows both the variable name and its value.

Fortran format statements are used for buffer, file, and terminal
input and output. C uses the same set of specifications described in this
section in nine different functions depending on the nature of the input and
output. These nine functions are as follows:

C Function Input /
Output

Buffer, File or Terminal Arguments

fprintf output file fixed
fscanf input file fixed
printf output terminal fixed

scanf input terminal fixed
sprintf output buffer fixed
sscanf input buffer fixed
vfprintf output file variable
vprintf output terminal variable
vsprintf output buffer variable

The first six functions must have an equal number of format specifiers
and variables. In essence, if a printf statement specifies three integers
(i.e., "%i %i %i\n"), then the specification must be followed by exactly three
integer variables as arguments to the printf function.

The last three functions can accept a variable number of arguments.
This is particularly important when all or parts of an array are to be
displayed. Fortran permits the array name to be given on a write
statement and the associated format specification will be executed as
many times as necessary to satisfy the write request. The following
Fortran example program that demonstrates this:

 program main
 integer iarray(4)
 integer itable(3,3)
 real farray(4)
 real ftable(3,3)
 character carray(4)
 character ctable(3,3)
 data iarray / 10,20,30,40 /
 data itable / 1,2,3,4,5,6,7,8,9 /
 data farray / 10.0,20.0,30.0,40.0 /
 data ftable / 1.0,2.0,3.0,4.0,5.0,
 - 6.0,7.0,8.0,9.0 /
 data carray / 'A','B','C','D' /
 data ctable / 'a','b','c','d','e',
 - 'f','g','h','i' /
 write (6,1)
 1 format (1H)
 write (6,2) iarray
 2 format (1H , 5i5)
 write (6,1)
 write (6,2) itable
 write (6,1)

 write (6,3) farray
 3 format (1H , 5f5.1)
 write (6,1)
 write (6,3) ftable
 write (6,1)
 write (6,4) carray
 4 format (1H , 5a5)
 write (6,1)
 write (6,4) ctable
 stop
 end
The program generates this display:

 10 20 30 40
 1 2 3 4 5
 6 7 8 9
 10.0 20.0 30.0 40.0
 1.0 2.0 3.0 4.0 5.0
 6.0 7.0 8.0 9.0
 A B C D
 a b c d e
 f g h i
A C program that accomplishes the same function is as follows:

 main()
 {
 #define format1 printf ("\n")
 void format2 (int elements, ...);
 void format3 (int elements, ...);
 void format4 (int elements, ...);
 int iarray[4] = { 10,20,30,40 };
 int itable[3][3] = { 1,2,3,4,5,6,7,8,9 };
 float farray[4] = { 10.0F,20.0F,30.0F,40.0F };
 float ftable[3][3] = { 1.0F, 2.0F, 3.0F, 4.0F,

 5.0F, 6.0F, 7.0F, 8.0F,
 9.0F };
 char carray[4] = { 'A','B','C','D' };
 char ctable[3][3] = { 'a','b','c','d','e',
 'f','g','h','i' };
 format1;
 format2 (sizeof(iarray)/sizeof(int), iarray);
 format1;
 format2 (sizeof(itable)/sizeof(int), itable);
 format1;
 format3 (sizeof(farray)/sizeof(float), farray);
 format1;
 format3 (sizeof(ftable)/sizeof(float), ftable);
 format1;
 format4 (sizeof(carray)/sizeof(char), carray);
 format1;
 format4 (sizeof(ctable)/sizeof(char), ctable);
 return;
 }
 #include <stdarg.h>
 void format2 (int elements, ...)
 {
 int i;
 va_list begin_array;
 va_list arg_pointer;
 va_start (arg_pointer, elements);
 begin_array = va_arg (arg_pointer, va_list);
 arg_pointer = begin_array;
 for (i = 1; i <= elements; i++) {
 printf ("%4.0d ", va_arg (arg_pointer, int));
 if (i%5 == 0)
 printf ("\n");
 }
 printf ("\n");
 va_end (arg_pointer);
 return;
 }
 #include <stdarg.h>
 void format3 (int elements, ...)
 {

 int i;
 va_list begin_array;
 va_list arg_pointer;
 va_start (arg_pointer, elements);
 begin_array = va_arg (arg_pointer, va_list);
 arg_pointer = begin_array;
 for (i = 1; i <= elements; i++) {
 printf ("%4.1f ", va_arg (arg_pointer,float));
 if (i%5 == 0)
 printf ("\n");
 }
 printf ("\n");
 va_end (arg_pointer);
 return;
 }
 #include <stdarg.h>
 void format4 (int elements, ...)
 {
 int i;
 va_list begin_array;
 va_list arg_pointer;
 va_start (arg_pointer, elements);
 begin_array = va_arg (arg_pointer, va_list);
 arg_pointer = begin_array;
 for (i = 1; i <= elements; i++) {
 printf ("%4c ", va_arg (arg_pointer, char));
 if (i%5 == 0)
 printf ("\n");
 }
 printf ("\n");
 va_end (arg_pointer);
 return;
 }

The first C function, format1, is created through the #define statement
and generates a blank line. The remaining three C functions all take two
arguments: the number of elements in the one-dimensional array or two-
dimensional table, and the name of the array or table. The length is
calculated through the use of the sizeof function which returns the length of
its argument in bytes. So, in format2 the value of sizeof(iarray) – the

number of bytes needed to store the array – divided by the value of
sizeof(int) – the number of bytes needed to store just one element of the
array – is 4, which is the length of the array.

Each of the remaining three C functions have the same structure.
The C standard macro va_start is invoked with the arguments arg_pointer
and elements: arg_pointer is a variable with a special data type, va_list,
that is set to point to the beginning of the array or table to be printed, while
elements is a count of the number of entries in the array or table. A pointer
to the next entry is returned by the first invocation of the va_arg macro:
this entry would be the pointer to the first element of the array or table.
The for loop is then executed as many times as there are elements in the
array or table. Each time, the next element of the array or table is
extracted by the va_arg macro and displayed using the printf function in an
appropriate format (i.e., d, f, or c depending on int, float, or char data
types). A new line is started after each five elements of the array or table
are displayed. This matches the five element formats in the Fortran
example program (i.e., 5i5, 5f5.1, and 5a5, respectively). A new
line is then generated to finish the last line of printed data. Finally, the C
standard library function va_end is invoked to facilitate a normal return to
the calling program (in this case, the main program).

This section has concentrated on Fortran output to a terminal. Later
in this chapter, sections on the read† and write† Fortran statement will
provide examples of input and output to other devices. Furthermore,
Chapter 8† will review Fortran format specifiers and C edit specifiers in
some additional detail.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: FUNCTION

Fortran TYPE function NAME (ARGUMENTS)
C Primary #define, return
C Secondary NONE

Fortran supports two kinds of subprograms: subroutines and
functions. Functions, in turn, can be either statement functions or
subprogram functions. Both kinds are demonstrated in the following
Fortran program:

 program main
 integer i
 integer j
 integer k
 integer l
 real x
 real y
 real fun
 state (jarg, karg) = i + jarg + karg
 i = 1
 j = 2
 k = 3
 l = state (j, k)
 write (6,1) l, i, j, k
 1 format (1H , i1, ' = ', 2 (i1, ' + '), i1)
 x = 123.0
 y = fun (x)
 write (6,2) y, x
 2 format (1H , f5.1, ' = ', f5.1, ' + 333.0')
 stop
 end
 real function fun (xarg)
 real xarg
 fun = xarg + 333.0
 return
 end
The program generates this display:

6 = 1 + 2 + 3
456.0 = 123.0 + 333.0
A C program that accomplishes the same function is as follows:

 main ()
 {
 int i = 1;
 int j = 2;
 int k = 3;
 int l;
 float x = 123.0F;
 float y;
 float fun (float x);
 #define state(jarg,karg) i + jarg + karg
 l = state (j, k);
 printf ("%i = %i + %i + %i\n", l, i, j, k);
 y = fun (x);
 printf ("%5.1f = %5.1f + 333.0\n", y, x);
 return;
 }
 float fun (float xarg)
 {
 return xarg + 333.0;
 }

Functions in both languages are very similar in construction. Fortran
allows the type of the function to be explicitly declared. Before the
ANSI C standard was developed, the data type of a C function was
declared only when it was not an integer, and arguments were declared in
separate lines. For example, a pre-ANSI version of the C example
program fun function would be

 float fun (xarg)
 float xarg;
 {
 return xarg + 333.0;
 }

and the function would have been declared in the main program as

 float fun ();

Advantages of the current ANSI specification is that the number and
type of a functions arguments are known by the compiler, and the first line
of the function is a good reminder to the programmer which arguments are
input and which are output. A Fortran statement function is available for
the duration of the subprogram in which it is defined. In other words, the
example program’s statement function, state, can be invoked in the
main program because it was defined there but not in the function fun.
Both Fortran and C allow a local variable to be involved in the specification
of the statement function even though that variable does not appear in the
argument list. In this case, the local variable i is part of the statement
function but is a third variable in addition to the two arguments, jarg and
karg.
{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: GO TO (assigned)

Fortran go to VARIABLE (LAB, LAB, ..., LAB)
C Primary switch
C Secondary ;, #define, case, default

Fortran provides several decision constructs to control the flow of
execution in a program. One of these is the assigned go to statement
as shown in the following program:

 program main
 integer i
 assign 3 to i
 go to i (1, 3)
 1 write (6,2)
 2 format (1H , 'This line will NOT be
displayed.')
 go to 5
 3 write (6,4)
 4 format (1H , 'This line will be displayed.')
 5 continue
 stop
 end
The program generates this display:

This line will be displayed.
A C program that accomplishes the same function is as follows:

 main()
 {
 #define i 3
 switch (i) {
 case 1: goto lab_1;
 case 3: goto lab_3;
 default: goto lab_5;
 }
 lab_1: printf ("This line will NOT be displayed.\n");
 goto lab_5;

 lab_3: printf ("This line will be displayed.\n");
 lab_5: ;
 return;
 }

In the Fortran example program, the variable i in the assigned go
to statement was initialized, as required, by an assign statement, and
one of the statement label in the assigned go to statement list was the
same as the value of the variable i. In the C example program, the
switch construct provided two explicit actions when the variable i was one
or three and a “catch all” action – the default specification – when the
variable was any other value. It is rare to see the goto statement in a C
program: although the statement clearly is part of the language, it appears
to be infrequently used in real-world coding practice.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: GO TO (computed)

Fortran go to (LAB, LAB, ..., LAB), VARIABLE
C Primary goto, switch
C Secondary ;, case, default

Fortran provides several decision constructs to control the flow of
execution in a program. One of these is the computed go to statement,
as shown in the following program:

 program main
 integer i
 i = 2
 go to (1, 3), i
 go to 5
 1 write (6,2)
 2 format (1H , 'This line will NOT be
displayed.')
 go to 5
 3 write (6,4)
 4 format (1H , 'This line will be displayed.')
 5 continue
 stop
 end
The program generates this display:

This line will be displayed.
A C program that accomplishes the same function is as follows:

 main()
 {
 int i = 2;
 switch (i) {
 case 1: goto lab_1;
 case 2: goto lab_3;
 default: goto lab_5;
 }
 lab_1: printf ("This line will NOT be displayed.\n");

 goto lab_5;
 lab_3: printf ("This line will be displayed.\n");
 lab_5: ;
 return;
 }

In the Fortran example program, the variable i in the computed go
to statement was initialized in a simple assignment statement and is used
to index into the list of statement labels. In the C example program, the
switch construct provided two explicit actions when the variable i was one
or three and a “catch all” action – the default specification – when the
variable was any other value. The default condition in C’s switch construct
specifies what action to take if the decision variable i is not one or two:
Fortran does not have such a safety net. In Fortran, if the decision
variable i is less than one or more than the number of labels given as
arguments in the computed go to statement, then execution continues
onto the next statement. This particular Fortran example program guards
against this problem by having an unconditional go to statement. This
unconditional go to statement diverts processing around the two write
statements. It is rare to see the goto statement in a C program: although
the statement clearly is part of the language, it appears to be infrequently
used in real-world coding practice.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: GO TO (unconditional)

Fortran go to LABEL
C Primary goto
C Secondary ;

Fortran provides several decision constructs to control the flow of
execution in a program. One of these is the unconditional go to
statement, as shown in the following program:

 program main
 integer i
 i = 1
 if (i .ne. 0) go to 2
 write (6,1)
 1 format (1H , 'This line will NOT be
displayed.')
 go to 4
 2 continue
 write (6,3)
 3 format (1H , 'This line will be displayed.')
 4 continue
 stop
 end
The program generates this display:

This line will be displayed.
A C program that accomplishes the same function is as follows:

 main ()
 {
 int i = 1;
 if (i != 0) goto lab_2;
 printf ("This line will NOT be displayed.\n");
 goto lab_4;
 lab_2: ;
 printf ("This line will be displayed.\n");
 lab_4: ;

 return;
 }

In the Fortran example program, the variable i in the unconditional
go to statement was initialized in a simple assignment statement. Being
initialized to a non-zero value, it forces the second of the write
statements to be executed. The C example program is constructed in a
manner almost identical to the Fortran example program. It is rare to see
the goto statement in a C program: although the statement clearly is part
of the language, it appears to be infrequently used in real-world coding
practice.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: IF (arithmetic)

Fortran if (EXPRESSION) LABEL, LABEL, LABEL
C Primary if
C Secondary ;, for, goto

Based on the sign of an expression or variable, Fortran can re-direct
the flow of execution using the arithmetic if statement. The arithmetic
if statement branches to three different labels depending on whether the
decision expression or variable is negative, zero, or positive. The
following Fortran program uses the arithmetic if statement:

 program main
 integer i
 do 7 i = -1, 1, 1
 if (i) 1, 3, 5
 1 continue
 write (6,2) i
 2 format (1H , 'Index i is negative ... ', i2)
 go to 7
 3 continue
 write (6,4) i
 4 format (1H , 'Index i is zero ', i2)
 go to 7
 5 continue
 write (6,6) i
 6 format (1H , 'Index i is positive ... ', i2)
 7 continue
 stop
 end
The program generates this display:

Index i is negative ... -1
Index i is zero 0
Index i is positive ... 1
A C program that accomplishes the same function is as follows:

 main ()

 {
 int i;
 for (i=-1; i<=1; i++) {
 if (i <= 0) {
 if (i == 0)
 goto label_3;
 else
 goto label_1;
 }
 else
 goto label_5;
 label_1: printf ("Index i is negative ... %2i\n", i);
 goto label_7;
 label_3: printf ("Index i is zero %2i\n", i);
 goto label_7;
 label_5: printf ("Index i is positive ... %2i\n", i);
 label_7: ;
 }
 return;
 }

Both program use a loop – do in Fortran and for in C – to generate
values of negative one, zero, and one for the decision variable i in
sequence. Fortran’s arithmetic if statement is a compact way to re-
direct the flow of execution depending on the value of the decision variable.
C’s compound if statement is a more involved but accomplishes the same
result.

It is rare to see the goto statement in a C program: although the
statement clearly is part of the language, it appears to be infrequently used
in real-world coding practice. The C example program was written with
several goto statements to parallel the Fortran example program. It could
have been written without goto statement as

 main ()
 {
 int i;
 for (i=-1; i<=1; i++) {
 if (i <= 0) {
 if (i == 0)
 printf ("Index i is zero %2i\n",i);

 else
 printf ("Index i is negative ... %2i\n",i);
 }
 else
 printf ("Index i is positive ... %2i\n", i);
 }
 return;
 }

Each of the goto statements within the for loop was replaced by the
corresponding printf statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: IF (logical)

Fortran if (EXPRESSION) go to LABEL
if (EXPRESSION) EXPRESSION

C Primary goto, if
C Secondary ==, !=, ;

Conditional execution is a major programming design tool in any
computer programming language. Both versions of Fortran’s logical if
statement are regular features of most Fortran programs. The first form of
Fortran’s logical if statement forces a change in the flow of execution, as
in the following example:

 program main
 integer i
 i = 1
 if (i .ne. 1) go to 2
 write (6,1) i
 1 format (1H ,'This line will display ... ', i1, '
= 1')
 2 continue
 write (6,3)
 3 format (1H , 'End of Logical IF Fortran ',
 - 'statement example.')
 stop
 end
The program generates this display:

This line will display ... 1 = 1
End of Logical IF Fortran statement example.
A C program that accomplishes the same function is as follows:

 main ()
 {
 int i = 1;
 if (i != 1) goto lab2;
 printf ("This line will display ... %i = 1\n", i);
 lab2: ;

 printf ("End of Logical IF Fortran "
 "statement example.\n");
 return;
 }

Both the Fortran and C example programs follow an identical
template: a decision variable is initialized, checked against a constant with
an if statement, a line of text is conditionally displayed, and a final, end-
of-program line of text is printed. The second form of the Fortran logical
if statement conditionally executes any valid Fortran executable
statement except do, any other if construction, or end, as in the
following example:

 program main
 integer i
 integer j
 integer k
 i = 0
 j = 2
 k = 1
 if (i .eq. 0) i = j + k
 write (6,1) i, j, k
 1 format (1H , i1, ' = ', i1, ' + ', i1)
 stop
 end
The program generates this display:

3 = 2 + 1
A C program that accomplishes the same function is as follows:

 main ()
 {
 int i = 0;
 int j = 2;
 int k = 1;
 if (i == 0)
 i = j + k;
 printf ("%i = %i + %i\n", i, j, k);
 return;

 }

Aside from syntactical differences between individual Fortran and C
statements, both example programs have the same structure and control
flow. Although the indentation of the C if statement is not required, it is
very common to see C source code written in a style where indentation is
used as a visual reminder of the scope of a control structure.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: IF … THEN

Fortran if (EXPRESSION) then
C Primary }
C Secondary ==, else

Three-way decision paths are not an uncommon requirement of a
program. They cover situations in which a program must take one action if
a key decision variable has a particular value, another action if not, and a
third action to cover error conditions. In Fortran, those three paths are
provided by the if statement, the else if statement, and the else
statement, respectively. The following Fortran program exercises these
three statements:

 program main
 integer i, j
 i = 1
 j = 1
 if (i .eq. 1) then
 write (6,1)
 1 format (1H , 'This line will print (#1).')
 else
 endif
 if (i .eq. 1) then
 write (6,2)
 2 format (1H , 'This line will print (#2).')
 else
 write (6,3)
 3 format (1H , 'This line will NOT print (#2).'
)
 endif
 if (i .eq. 1) then
 write (6,4)
 4 format (1H , 'This line will print (#3a).')
 if (j .eq. 1) then
 write (6,5)
 5 format (1H , 'This line will print (#3b).'
)
 else

 write (6,6)
 6 format (1H , 'This line will NOT print
(#3b).')
 endif
 else
 write (6,7)
 7 format (1H , 'This line will NOT print
(#3a).')
 endif
 stop
 end
The program generates the following display when the variables i and j
are both equal to one:

This line will print (#1).
This line will print (#2).
This line will print (#3a).
This line will print (#3b).
Under other conditions, the program would produce the following results:

Var Print (or not) Specific Messages

i j will 1 will 2 not 2 will 3a not 3a will 3b not 3b

1 1 print print print print
1 2 print print print print
2 1 print print
2 2 print print

A C program that accomplishes the same function is as follows:

 main()
 {
 int i = 1;
 int j = 1;
 if (i == 1)
 printf ("This line will print (#1).\n");
 if (i == 1)

 printf ("This line will print (#2).\n");
 else
 printf ("This line will NOT print (#2).\n");
 if (i == 1) {
 printf ("This line will print (#3a).\n");
 if (j == 1)
 printf ("This line will print (#3b).\n");
 else
 printf ("This line will NOT print (#3b).\n");
 }
 else
 printf ("This line will NOT print (#3a).\n");
 return;
 }

The first if has a single outcome because no action is associated with
its corresponding else statement. The second if has two outcomes
depending on the value of the decision variable i, and both the Fortran and
C code are very similar in design. The third if is compound: the outer part
– 3a – turns on the value of the decision variable i, and the inner part – 3b
– depends on the value of the decision variable j. In the Fortran example
program, both parts of this compound if are identical to illustrate the
effect of the two if...then statements. In the C example program,
both parts of the compound if are likewise indented, but the curly braces
surrounding the full contents of the outer if are critical. Only these braces
associate the last else statement with the beginning of the outer if
statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: IMPLICIT

Fortran implicit TYPE (L, L, ..., L)
implicit TYPE (LETTER-LETTER)

C Primary NONE
C Secondary --, (double), for, sqrt

Fortran variables, arrays, external functions, and statement functions
inherit a data type depending on the first letter of their symbolic name: i
through n are integers, and the remainder are real. This blanket
default typing can be overridden by the Fortran implicit statement.
The following Fortran program reverses the sense of the default typing:

 program main
 implicit real (i - n)
 implicit integer (a - h, o - z)
 i = 6561.0
 do 2 x = 3, 1, -1
 i = sqrt (i)
 write (6,1) x, i
 1 format (1H , '3 ** ', i1, ' = ', f4.1)
 2 continue
 stop
 end
The program generates this display:

3 ** 3 = 81.0
3 ** 2 = 9.0
3 ** 1 = 3.0
A C program that accomplishes the same function is as follows:

 #include <math.h>
 main ()
 {
 float i = 6561.0F;
 int x;
 for (x=3; x>=1; x--) {
 i = sqrt ((double) i);

 printf ("3 ** %i = %4.1f\n", x, i);
 }
 return;
 }

Both programs display powers of three by successively taking the
square root of the next higher power: Fortran using the real sqrt
function, and C using the double sqrt function and promotes the float
variable i to a double through the cast operator (i.e., (double)). Data typing
of variables is automatic in the Fortran example program and manual in the
C example program. Fortran’s implicit statement has no counterpart
in C, which is understandable since C has no default mapping between a
variable name and its data type. Explicit data typing of each variable in C
is required.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: INQUIRE

Fortran inquire (UNIT=NUMBER, OPTIONS)
inquire (FILE=NAME, OPTIONS)

C Primary fopen
C Secondary &&, ==, !=, fclose, FILE, freopen, NULL

ANSI 77 Fortran has a major advantage over ANSI 66 Fortran in the
area of file handling. The first Fortran standard had no real file handling
capabilities, whereas the second Fortran standard has a rich collection of
language statements to open, close, and query files. The Fortran
inquire statement can be invoked for three purposes: to report file
attributes, to determine if a file exists, and to ascertain if a file is open to a
program. For each purpose, the Fortran inquire statement can query
by Fortran file unit number or by file name. Each of these features of the
inquire statement are exercised in the following Fortran program

 character caccess*10
 character cblank*4
 character cdirect*7
 logical lexist
 character cfile*11
 character cform*11
 character cformatted*7
 integer iiostat
 character cname*11
 integer inextrec
 integer inumber
 logical lopened
 integer irecl
 character csequential*7
 character cunformatted*7
 integer iunit=7
 open (unit=7, file='inquire.dat')
 write (6,1)
 1 format (/ 1H , 'The file [inquire.dat] open ',
 - 'on unit 7.')
 write (6,2)
 2 format (/ 1H , 'INQUIRE by unit number ...')

 iunit = 7
 cfile = ' '
 inquire (access=caccess, blank=cblank,
 - direct=cdirect, exist=lexist,
 - form=cform, formatted=cformatted,
 - iostat=iiostat, name=cname,
 - nextrec=inextrec, number=inumber,
 - number=inumber, opened=lopened,
 - recl=irecl,
sequential=csequential,
 - unformatted=cunformatted, unit=iunit)
 write (6,3) caccess, cblank, cdirect,
lexist,
 - cform, cformatted, iiostat,
cname,
 - inextrec, inumber, lopened,
irecl,
 - csequential, cunformatted
 3 format (/ 1H , 'access ', a10, 2x,
 - 1H , 'blank ', a4
 - / 1H , 'direct ', a7, 5x,
 - 1H , 'exist ', l1
 - / 1H , 'form ', a11, 1x,
 - 1H , 'formatted ', a7
 - / 1H , 'iostat ', i5.5, 7x,
 - 1H , 'name ', a11, 1x,
 - / 1H , 'nextrec ', i5.5, 7x,
 - 1H , 'number ', i5.5
 - / 1H , 'opened ', l1, 11x,
 - 1H , 'recl ', i5.5
 - / 1H , 'sequential ', a7, 5x,
 - 1H , 'unformatted ... ', a7)
 write (6,4)
 4 format (/ 1H , 'INQUIRE by file name ...')
 iunit = 0
 cfile = cname
 inquire (access=caccess, blank=cblank,
 - direct=cdirect, exist=lexist,
 - form=cform, formatted=cformatted,
 - iostat=iiostat, name=cname,

 - nextrec=inextrec, number=inumber,
 - number=inumber, opened=lopened,
 - recl=irecl,
sequential=csequential,
 - unformatted=cunformatted, file=cname)
 write (6,3) caccess, cblank, cdirect,
lexist,
 - cform, cformatted, iiostat,
cname,
 - inextrec, inumber, lopened,
irecl,
 - csequential, cunformatted
 inquire (file=cname, exist=lexist)
 if (lexist) then
 write (6,5) cname
 5 format (/ 1H , 'The file [', a11, ']
exists.')
 else
 write (6,6) cname
 6 format (/ 1H , 'The file [', a11, '] does',
 - 'NOT exist.')
 endif
 inquire (file=cname, opened=lopened)
 if (lopened) then
 write (6,7) cname
 7 format (/ 1H , 'The file [', a11, '] is
open.')
 else
 write (6,8) cname
 8 format (/ 1H , 'The file [', a11, '] is ',
 - 'NOT open.')
 endif
 close (unit=inumber)
 stop
 end
The program generates this display:

The file [inquire.dat] open on unit 7.
INQUIRE by unit number ...

access SEQUENTIAL blank NULL
direct NO exist T
form FORMATTED formatted YES
iostat 00000 name
inquire.dat
nextrec 00001 number 00007
opened T recl 00000
sequential YES unformatted ... NO
INQUIRE by file name ...
access SEQUENTIAL blank NULL
direct NO exist T
form FORMATTED formatted YES
iostat 00000 name
inquire.dat
nextrec 00001 number 00007
opened T recl 00000
sequential YES unformatted ... NO
The file [inquire.dat] exists.
The file [inquire.dat] is open.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 char *cfile = "inquire.dat";
 FILE *iunitr;
 FILE *iunitrb;
 if (((iunitr = fopen (cfile,"r"))==NULL) &&
 ((iunitrb = fopen (cfile,"rb"))==NULL)) {
 printf ("\nThe file [%s] does NOT exist.\n",
 cfile);
 }
 else
 printf ("\nThe file [%s] exists.\n",
 cfile);

 if (iunitr != NULL)
 fclose (iunitr);
 if (iunitrb != NULL)
 fclose (iunitrb);
 return;
 }

The program generates this display:

The file [inquire.dat] exists.
C’s ability to query file attributes and report on the connection of a file to a
program is very restricted compared to the capabilities of Fortran’s
inquire statement.

C can not report file attributes because C does not distinguish
between files created in text or binary mode (i.e., Fortran’s formatted
and unformatted mode, respectively). C allows the programmer to
develop whatever file structure is desired and process the resulting file
accordingly.

C can not report if a file is already open to a program because the
association between a file and the pointer to the file (i.e., iunitr and iunitrb in
the C example program) is managed by C whereas, in Fortran, the
association between a file and a unit number (i.e., iunit in the Fortran
example program) is explicitly managed by the programmer. As such,
even though the C standard function fclose will fail if no file is associated
with the pointer given as the argument to the fclose function, this pointer
will not come into existence unless a file has been successfully opened.
Furthermore, the C standard function freopen, which will reopen a file on a
different file pointer, will execute without error if the file in question was not
already open.

C’s standard library fopen function can be used to determine if a file
already exists. In the C example program, a file is opened both for input in
both text mode and binary mode (i.e., the “r” and “rb” arguments,
respectively). If the file could be opened in either or both modes, then the
file is declared to exist. Attempting to open a file in both text and binary
modes is done purely as a precaution. ANSI C distinguishes between a
text file and a binary file in terms of the way a file can be manipulated by
certain functions but does not require the host operating system to
distinguish between the file modes. Because some host operating

systems do and others do not distinguish between text and binary file
modes, the C example program was written to accommodate either
condition.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: INTEGER

Fortran integer VARIABLE
integer FUNCTION_NAME

C Primary int
C Secondary long, short, signed, unsigned

Variables, arrays, and functions that deal in whole numbers are
defined in Fortran with the integer statement. Each use of the
integer statement is demonstrated in the following program

 program main
 integer variable
 integer array(3)
 integer farg
 integer fvalue
 integer fname
 variable = 1
 array(1) = 2
 array(2) = 3
 array(3) = 4
 farg = array(3)
 fvalue = fname (farg)
 write (6,1) variable, array, fvalue
 1 format (1H , 5i4)
 stop
 end
 integer function fname (farg)
 integer farg
 fname = farg + 1
 return
 end
The program generates this display:

 1 2 3 4 5
A C program that accomplishes the same function is as follows:

 main()

 {
 int variable = 1;
 int array[3] = { 2, 3, 4 };
 int farg = array[2];
 int fvalue;
 int fname (int farg);
 fvalue = fname (farg);
 printf ("%3d %3d %3d %3d %3d\n",
 variable, array[0], array[1], array[2],
 fvalue);
 return;
 }
 int fname (int farg)
 {
 return farg + 1;
 }

ANSI 77 Fortran defines a single form of the integer data type.
Many Fortran compilers support two additional forms: integer*2 for
whole numbers in the range of +/- 32,767 and integer*4 for whole
numbers in the range of +/- 2,147,484,647. Both additional forms are
supported in ANSI C. Fortran’s integer*2 is C’s int, short, and signed
int data types, and integer*4 is represented by long and signed long,
among others (see Table 3.2†).

C also provides two new series of types: one for whole numbers in
the range of 0 to 65,535 with four different names (i.e., unsigned, unsigned
int, unsigned short, and unsigned short int) and the other for whole
numbers in the range of 0 to 4,294,967,295 with two different names (i.e.,
unsigned long and unsigned long int). Chapter 3† presents some
additional details about Fortran and C whole number data types.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: INTRINSIC

Fortran intrinsic FUNCTION_NAME
C Primary (*function)()
C Secondary cos, (double), (float), sin

Fortran has about seventy intrinsic functions (see Table 2-1†). In
order to use any of these intrinsic functions as an argument to a
subprogram, the function must be specified in an intrinsic statement.
All Fortran intrinsic functions can be used as subprogram arguments
except those that perform type conversion (such as int or ichar),
those that compare lexical relationships (such as lge or lgt), and those
that choose the largest or smallest in a series (i.e., the max and min
family of intrinsic functions). The following Fortran program alternates
between the sin and cos functions as the argument to a function:

 program main
 real trig, radians, sine, cosine
 intrinsic sin, cos
 radians = 0.5
 sine = sin (radians)
 cosine = cos (radians)
 write (6,1) sine, radians, cosine, radians
 1 format (1H , f7.6, ' = sin (',f2.1,') ',
 - f7.6, ' = cos (',f2.1,')')
 sine = trig (sin, radians)
 cosine = trig (cos, radians)
 write (6,1) sine, radians, cosine, radians
 stop
 end
 real function trig (result, radians)
 real result, radians
 trig = result (radians)
 return
 end
The program generates this display:

.479426 = sin (.5) .877583 = cos (.5)

.479426 = sin (.5) .877583 = cos (.5)
A C program that accomplishes the same function is as follows:

 #include <math.h>
 main ()
 {
 float radians = 0.5F, sine, cosine;
 float trig (double (*function)(), float radians);
 sine = (float) sin (radians);
 cosine = (float) cos (radians);
 printf ("%7.6f = sin (%2.1f) "
 "%7.6f = cos (%2.1f)\n",
 sine,radians,cosine,radians);
 sine = trig (sin, radians);
 cosine = trig (cos, radians);
 printf ("%7.6f = sin (%2.1f) "
 "%7.6f = cos (%2.1f)\n",
 sine,radians,cosine,radians);
 return;
 }
 float trig (double (*function)(), float radians)
 {
 float result;
 result = (float) (*function)(radians);
 return result;
 }

Fortran’s intrinsic statement allows a generic function such as
trig to be written that can exercise a variety of Fortran intrinsic functions.
C’s counterpart is to pass a pointer to a function as an argument. In effect,
this argument is the base address of the executable code for the function
being passed as an argument. In the trig function prototype, the syntax
(*function)() represents a dummy pointer that is replaced by the actual
function name – sin or cos – when the trig function is invoked. Note that
the choice of the name “function” in the trig function prototype is arbitrary:
any valid C symbolic name would be equally effective. This C example
program also demonstrates explicit type conversion through the use of the
cast operator such as (float) and (double).

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran

Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: LOGICAL

Fortran logical VARIABLE
logical FUNCTION_NAME

C Primary typedef
C Secondary !, #define

Variables, arrays, and functions that deal in with logical values are
defined in Fortran with the logical statement. Each use of the logical
statement is demonstrated in the following program:

 program main
 logical variable
 logical array(3)
 logical farg
 logical fvalue
 logical fname
 variable = .TRUE.
 array(1) = .FALSE.
 array(2) = .TRUE.
 array(3) = .FALSE.
 farg = array(3)
 fvalue = fname (farg)
 write (6,1) variable, array, fvalue
 1 format (1H , 5l4)
 stop
 end
 logical function fname (farg)
 logical farg
 if (.not. farg) fname = .TRUE.
 return
 end
The program generates this display:

 T F T F T
A C program to perform the same function is

 typedef int logical;

 #define FALSE 0
 #define TRUE 1
 main ()
 {
 logical variable;
 logical array[3];
 logical farg;
 logical fvalue;
 logical fname (logical farg);
 char tf[2] = { 'F', 'T' };
 variable = TRUE;
 array[0] = FALSE;
 array[1] = TRUE;
 array[2] = FALSE;
 farg = array[2];
 fvalue = fname (farg);
 printf (" %c %c %c %c %c\n", tf[variable],
 tf[array[0]], tf[array[1]], tf[array[2]],
 tf[fvalue]);
 return;
 }
 logical fname (logical farg)
 {
 logical a = FALSE;
 if (!farg) a = TRUE;
 return a;
 }

Both program produce the same display, but the Fortran example
program builds on an existing feature of that language while the C example
program creates a new data type and defines two global constants to
produce the same result.

C’s typedef statement establishes a synonym for a particular storage
class. This particularly useful feature of the C language that allows a
complicated data storage declaration to be written out just once in a
typedef statement for repeated use in the remainder of the program. In the
example program, the typedef statement establishes the word logical as
another name for the int data type. Subsequently, two #define statements
establish numeric equivalents for TRUE and FALSE constants and a tf
array is created to hold the letters T and F to fulfill the need to display

logical variables and arrays. With this new type definition and given the
choice for the TRUE and FALSE constants, Fortran’s two standard logical
variable expressions

 if (.not. logical_variable)
 if (logical_variable)
have analogs in C as:

 if (!logical_variable)
 if (logical_variable)

This particular use of the C typedef and #define statements gives the
appearance that C directly supports Fortran’s logical data type. C
does not directly support Fortran’s logical data type, but it does have
language features that can be used to emulate such a data type.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: OPEN

Fortran open (UNIT=N, FILE=NAME)
C Primary fopen
C Secondary BUFSIZ, exit, fclose, FILE, fread,

fscanf, fwrite, _IOFBF, remove, rewind,
setvbuf, sizeof, strcpy, strtol,
tmpfile, tmpnam

ANSI 77 Fortran has a major advantage over ANSI 66 Fortran in the
area of file handling. The first Fortran standard had no real file handling
capabilities, whereas the second Fortran standard has a rich collection of
language statements to open, close, and query files. The Fortran
open statement can be invoked to open new or old files, formatted or
unformatted files, sequential or direct access files, and temporary files.
The following Fortran program opens a sequential access file, a direct
access file, and a temporary file:

 character caccess*10
 character cblank*4
 character cfile*8
 character cform*11
 integer iiostat
 integer irecl
 character cstatus*7
 integer iunit
 write (6,1)
 1 format (/ 1H , 'Open a default sequential access
',
 - 'method (SAM) file ... '
)
 caccess = 'SEQUENTIAL'
 cblank = 'NULL'
 cfile = 'open.sam'
 cform = 'FORMATTED'
 cstatus = 'UNKNOWN'
 irecl = 0
 iunit = 7

 open (access=caccess, blank=cblank,
file=cfile,
 - form=cform, iostat=iiostat,
 - status=cstatus, unit=iunit
)
 write (6,2) caccess, cblank, cfile,
cform,
 - iiostat, irecl, cstatus, iunit
 2 format (/ 1H , 'access ', a10, 2x,
 - 1H , 'blank ', a4
 - / 1H , 'file ', a8, 4x,
 - 1H , 'form ', a11
 - / 1H , 'iostat ', i5.5, 7x,
 - 1H , 'recl ', i5.5
 - / 1H , 'status ', a7, 5x,
 - 1H , 'unit ', i5.5)
 close (unit=iunit)
 write (6,3)
 3 format (/ 1H , 'Open a default direct access ',
 - 'method (DAM) file ... '
)
 caccess = 'DIRECT'
 cblank = 'n/a '
 cfile = 'open.dam'
 cform = 'UNFORMATTED'
 cstatus = 'UNKNOWN'
 irecl = 512
 iunit = 7
 open (access=caccess,
file=cfile,
 - form=cform, iostat=iiostat,
recl=irecl,
 - status=cstatus, unit=iunit
)
 write (6,2) caccess, cblank, cfile,
cform,
 - iiostat, irecl, cstatus, iunit
 close (unit=iunit)
 write (6,4)

 4 format (/ 1H , 'Open a default temporary
file ...')
 caccess = 'SEQUENTIAL'
 cblank = 'NULL'
 cfile = 'n/a '
 cform = 'FORMATTED'
 cstatus = 'SCRATCH'
 irecl = 0
 iunit = 7
 open (access=caccess, blank=cblank,
 - form=cform, iostat=iiostat,
 - status=cstatus, unit=iunit
)
 write (6,2) caccess, cblank, cfile,
cform,
 - iiostat, irecl, cstatus, iunit
 stop
 end
The program generates this display:

Open a default sequential access method (SAM) file ...
access SEQUENTIAL blank NULL
file open.sam form FORMATTED
iostat 00000 recl 00000
status UNKNOWN unit 00007
Open a default direct access method (DAM) file ...
access DIRECT blank n/a
file open.dam form
UNFORMATTED
iostat 00000 recl 00512
status UNKNOWN unit 00007
Open a default temporary file ...
access SEQUENTIAL blank NULL
file n/a form FORMATTED
iostat 00000 recl 00000

status SCRATCH unit 00007
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 #include <stdlib.h>
 main ()
 {
 char fopen_key[4];
 FILE *iunit;
 printf ("\nOpen a default sequential access "
 "method (SAM) file ...\n");
 strcpy (fopen_key, "r");
 iunit = fopen ("open.sam", fopen_key);
 if (iunit == NULL)
 strcpy (fopen_key, "wa");
 else
 fclose (iunit);
 if ((iunit=fopen ("open.sam",fopen_key)) == NULL) {
 printf ("... FAILED to open for "
 "%s access.\n", fopen_key);
 exit (EXIT_FAILURE);
 }
 else
 printf ("... successfully opened for "
 "%s access.\n", fopen_key);
 printf ("\nOpen a default direct access "
 "method (DAM) file ...\n");
 strcpy (fopen_key, "rb+");
 iunit = fopen ("open.dam", fopen_key);
 if (iunit == NULL)
 strcpy (fopen_key, "wb+");
 else
 fclose (iunit);
 if ((iunit=fopen ("open.dam",fopen_key)) == NULL) {
 printf ("... FAILED to open for "
 "%s access.\n", fopen_key);
 exit (EXIT_FAILURE);
 }
 else

 printf ("... successfully opened for "
 "%s access.\n", fopen_key);
 printf ("\nOpen a default temporary file ...\n");
 if ((iunit = tmpfile ()) == NULL) {
 printf ("... FAILED to open temporary"
 "file.\n");
 exit (EXIT_FAILURE);
 }
 else
 printf ("... successfully opened"
 "temporary file.\n");
 printf ("\n");
 exit (EXIT_SUCCESS);
 }

The program generates this display when executed the first time:

Open a default sequential access method (SAM) file ...
... successfully opened for wa access.
Open a default direct access method (DAM) file ...
... successfully opened for wb+ access.
Open a default temporary file ...
... successfully opened temporary file.

It generates this display when executed a second time:

Open a default sequential access method (SAM) file ...
... successfully opened for r access.
Open a default direct access method (DAM) file ...
... successfully opened for rb+ access.
Open a default temporary file ...
... successfully opened temporary file.

Both programs use a number of features of their respective file

opening statements. However, there are differences between Fortran and
C in terms of file types, file input and output, and file attribute control.

Sequential access files in Fortran correspond to text files in C and
unformatted direct access files correspond to binary files. C’s fopen
function specifies the mode in which a file is accessed. These modes
correspond to the Fortran open statement’s sequential and direct access
and formatted and unformatted keywords, such as the following:

ACCESS FORM C Input C Output

sequential formatted r wa
sequential unformatted rb wab
direct formatted r+ w+
direct unformatted rb+ wb+

Each input mode – the r access flag – requires that the file already
exists. Each output mode – the w access flag – will truncate an existing
file or create the file if it does not already exist. For output, both sequential
access mode file types are opened with the letter a (for “append”) in the C
access flag; this forces all writes to occur at the end of the file. Both
direct access file types are opened with the plus symbol (for “update”) in
the C access flag that allows the file to be written to or read from any
location in the file. In the C example program, Fortran formatted
sequential access and unformatted direct access files are
opened as text and binary files, respectively. Executing the program twice
demonstrates the difference between opening a file for output versus input.

Regarding the temporary file, Fortran can open any type of file
temporarily. This is accomplished in the Fortran open statement by
removing the file argument so that the file has no name and using the
keyword SCRATCH in the status argument. C’s tmpfile function also
creates a temporary file, but tmpfile opens a binary file for output (i.e., a
wb+ access flag). If a different file type is required as a temporary file, it
must be opened explicitly with C’s fopen, closed with fclose, and deleted
with remove. With such a temporary file, a temporary file name can be
generated by using tmpnam() as the first argument in the fopen call, and
this file name will be unique among all files open to the program.

Fortran allows more precise control over opening an existing file or
creating a file. If a program requires a file to exist before being opened,

the Fortran open statement can set the status flag to OLD whether or
not the file is to be read or written. C’s fopen function can force the same
requirement if the file is opened with any access flag that includes the letter
r. If a program requires that a file be created, the Fortran open
statement can set the status flag to NEW and an error will occur if the
file already exists. C’s fopen function will create a file if the file is opened
with an access flag including w but will not error if the file already exists. If
the file exists, it will be truncated at the beginning of the file and all contents
will be lost. To prevent opening an existing file and having it truncated by
mistake, the existence of the file can be checked with C’s fopen function
used to emulate Fortran’s inquire statement (see inquire† section in
this chapter).

C does not provide as much information about file attributes as does
Fortran. In this chapter, the section on the Fortran inquire† statement
included a Fortran example program that reported a whole series of file
attributes but the corresponding C example program was only able to
determine file existence.

Aside from fundamental file attributes such as unit, name, error and
access control, the remaining Fortran file attributes establish the record
length of direct access files and blank interpretation.

Fortran’s direct access files have a fixed record length. That record
length is specified as the argument to the recl option in Fortran’s open
statement. The following Fortran program opens such a file with a record
length of 36 bytes, populates it with three records, and then reads back all
three records:

 program main
 integer irecl, irec
 real rarray(9), xarray(9)
 data rarray / 0.0, 1.0, 2.0, 3.0, 4.0,
 - 5.0, 6.0, 7.0, 8.0 /
 irecl = 36
 open (unit=7, file='recl.dat',
 - access='DIRECT', recl=irecl)
 write (6,1) irecl
 1 format (1H , '[recl.dat] is open with '
 - 'a record length of ', i2, '
bytes.'
 - / 1H , 'The default record length ',

 - 'is ??? bytes.')
 do 2 irec = 1, 3, 1
 rarray(1) = float (irec)
 write (7,rec=irec) rarray
 2 continue
 do 4 irec = 1, 3, 1
 read (7,rec=irec) xarray
 write (6,3) xarray
 3 format (1H , 9f4.1)
 4 continue
 close (unit=7)
 stop
 end
The program generates this display:

[recl.dat] is open with a record length of 36 bytes.
The default buffer length is ??? bytes.
 1.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
 2.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
 3.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 FILE *n;
 int irecl=36, irec;
 struct array { float r[9]; } rarray[1]=
 { 0.0F, 1.0F, 2.0F,
 3.0F, 4.0F, 5.0F,
 6.0F, 7.0F, 8.0F };
 struct array xarray[1];
 char buffer[36];
 n = fopen ("recl.dat", "wb+");
 setvbuf (n, buffer, _IOFBF, sizeof (buffer));
 printf ("[recl.dat] is open with "
 "a record length of %2i bytes.\n", irecl);
 printf ("The default buffer length is %d bytes.\n",
 BUFSIZ);

 for (irec=1; irec<=3; irec++) {
 rarray[0].r[0] = (float) irec;
 fwrite (rarray, sizeof(struct array), 1, n);
 }
 fclose (n);
 n = fopen ("recl.dat", "rb+");
 setvbuf (n, buffer, _IOFBF, sizeof (buffer));
 for (irec=1; irec<=3; irec++) {
 fread (xarray, sizeof (struct array), 1, n);
 printf (" %3.1f %3.1f %3.1f", xarray[0].r[0],
 xarray[0].r[1], xarray[0].r[2]);
 printf (" %3.1f %3.1f %3.1f", xarray[0].r[3],
 xarray[0].r[4], xarray[0].r[5]);
 printf (" %3.1f %3.1f %3.1f", xarray[0].r[6],
 xarray[0].r[7], xarray[0].r[8]);
 printf ("\n");
 }
 fclose (n);
 return;
 }

C uses the setvbuf function to establish the record length for the file.
ANSI C uses a standard buffer that is BUFSIZ bytes long where BUFSIZ is
at least 256 bytes. The C example program uses a buffer, called buffer,
that is declared to be 36 bytes long; its length is calculated by the sizeof
operator as the last argument to the setvbuf function. By default, ANSI C
fully buffers input and output to files, and the example program echoes that
default with the _IOFBF macro. Other buffering schemes are line-buffered
and no buffering (i.e., the _IOLBF and _IONBF macros, respectively).

Blanks in numeric fields in a Fortran formatted file are normally
ignored. Trailing and embedded blanks can be interpreted as zeros if
Fortran open statement’s blank option is set to ZERO. The following
Fortran program demonstrates reading the same file under both options:

 program main
 integer iarray(4)
 write (6,1)
 1 format (1H , 'Processing blank=NULL file ...')
 open (unit=7, file='nz.dat', blank='NULL')
 read (7,2) iarray

 2 format (4i5)
 close (unit=7)
 write (6,3) iarray
 3 format (1H , 4 (5x, i5))
 write (6,4)
 4 format (1H , 'Processing blank=ZERO file ...')
 open (unit=7, file='nz.dat', blank='ZERO')
 read (7,2) iarray
 close (unit=7)
 write (6,3) iarray
 stop
 end
When using this input file (the second line is present only to show spacing
and actually isn’t processed),

12 34 2 45
12345123451234512345
the display is generated:

Processing blank=NULL file ...
 12 34 0 245
Processing blank=ZERO file ...
 12000 340 0 2045
A C program that accomplishes the same function is as follows:

 #include <stddef.h>
 #include <stdlib.h>
 #include <stdio.h>
 main ()
 {
 FILE *n;
 char buffer[20], carray[4][5], number[6];
 char blank = ' ';
 int i, j, k, last, first, index;
 long iarray[4];
 printf ("Processing blank=NULL file ...\n");
 n = fopen ("nz.dat", "r");
 fscanf (n, "%20c\n", buffer);
 k = 0;

 for (i=0; i<=3; i++) {
 last = 0;
 for (j=0; j<=4; j++) {
 carray[i][j] = buffer[k];
 if (buffer[k] != blank)
 last = j;
 k += 1;
 }
 first = 0;
 for (j=last; j>=0; j--) {
 if (carray[i][j] != blank)
 first = j;
 }
 index = 0;
 for (j=first; j<=last; j++) {
 if (carray[i][j] != blank) {
 number[index] = carray[i][j];
 index += 1;
 }
 }
 number[index] = '\0';
 iarray[i] = strtol (&number[0], NULL, 10);
 }
 printf (" %5ld %5ld %5ld %5ld\n",
 iarray[0], iarray[1], iarray[2], iarray[3]);
 printf ("Processing blank=ZERO file ...\n");
 rewind (n);
 n = fopen ("nz.dat", "r");
 fscanf (n, "%20c\n", buffer);
 k = 0;
 last = 4;
 for (i=0; i<=3; i++) {
 for (j=0; j<=last; j++) {
 carray[i][j] = buffer[k];
 k += 1;
 }
 first = 0;
 for (j=last; j>=0; j--) {
 if (carray[i][j] != blank)
 first = j;

 }
 index = 0;
 for (j=first; j<=last; j++) {
 if (carray[i][j] == blank) {
 number[index] = '0';
 }
 else
 number[index] = carray[i][j];
 index += 1;
 }
 number[index] = '\0';
 iarray[i] = strtol (&number[0], NULL, 10);
 }
 printf (" %5ld %5ld %5ld %5ld\n",
 iarray[0], iarray[1], iarray[2], iarray[3]);
 fclose (n);
 return;
 }

Fortran automatically interprets blanks for the programmer whether
blanks are ignored or treated as zero. C requires the programmer to
explicitly handle each individual digit of a number to ignore a blank or
replace it with zero.

Corresponding to Fortran’s NULL case, the C example program
extracts each of the four fields from the line that was read, determines the
starting and ending character of each field, compresses embedded blanks
if they exist, and converts the resulting string to a number with the strtol
function. This complex method of handling is necessary to cover the case
of embedded blanks because C recognizes blanks as separators between
fields. If the file had been read as:

 fscanf (n, "%ld %ld %ld %ld\n", iarray[0],
 iarray[1], iarray[2], iarray[3]);

then the array would hold the values 12, 34, 2, and 45. Under this format,
C interprets the five blanks in columns 11 through 15 and the single blank
at column 19 as field separators. If the numbers in the file had been
written with a zero in the field of blanks and no embedded blanks, such as

12 34 0 245

12345123451234512345
and reread with the fscanf statement above, then the array would hold the
values 12, 34, 0, and 245.

C does not require complicated coding to process numeric fields in
formatted files. Straightforward uses of fscanf are possible if such files
include a zero rather than all blanks in each empty field and represent
numbers with digit strings that do not have embedded blanks. In the
ZERO case, the C example program processes each field in the same way
except that it replaces trailing and embedded blanks with zeros.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: PARAMETER

Fortran parameter (NAME = EXPRESSION)
C Primary #define
C Secondary NONE

Parameters are Fortran compile-time constants. In essence, once
their value is set at the beginning of a source code file, they cannot be
changed. As such, parameters are useful in holding the value of natural
constants (i.e., pi) and in setting the size of arrays. Furthermore, they can
be displayed by any output statement but can not be read from a file or the
terminal, nor can they be assigned a value by any expression. The
following Fortran program demonstrates the use of a constant:

 program main
 parameter (n1 = 1)
 parameter (n2 = n1 + n1)
 parameter (n3 = n1 + n2)
 parameter (n4 = n2 * n2)
 parameter (n5 = n2 + n3)
 real array(n2)
 character string(n5)
 data array / 6.0, 7.0 /
 data string / ',', ' ', '8', '.', '0' /
 write (6,1) n1, n2, n3, n4, n5, array, string
 1 format (1H , 5 (i1, ', '), f3.1, ', ', f3.1,
5a1)
 stop
 end
The program generates this display:

1, 2, 3, 4, 5, 6.0, 7.0, 8.0
A C program that accomplishes the same function is as follows:

 #define n1 1
 #define n2 n1 + n1
 #define n3 n1 + n2
 #define n4 n2 * n2

 #define n5 n2 + n3
 main ()
 {
 float array[n2] = { 6.0, 7.0 };
 char string[n5] = ", 8.0";
 printf ("%i, %i, %i, %i, %i, %3.1f, %3.1f%s\n",
 n1, n2, n3, n4, n5,
 array[0], array[1], string);
 return;
 }

Both example programs set parameters to a simple constant (n1),
“compute” a parameter’s value using other parameters (n3 and n4), and
use parameters to set the size of arrays (n2 and n5). In one way,
Fortran parameters are treated as if they were a full-fledged variable in that
they must be one of Fortran’s data types. C’s #define statement actually
instructs the compiler to replace the source string with the target string
wherever it appears. That is, with this definition

 #define n6 1 + 5

the compiler would compile this line of code

 printf ("%i\n", n6);

as if it had been written as

 printf ("%i\n", 1 + 5);

In this context, C’s #define statement is used to establish symbolic
constants for the compiler to pre-process the source code file.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: PAUSE

Fortran pause
pause NUMBER
pause STRING

C Primary getchar
C Secondary NONE

Fortran allows program execution to be suspended through the use of
the pause statement. The following Fortran program gives an example
of pause:
 program main
 write (6,1)
 1 format (1H , 'About to pause without comment ...
')
 pause
 pause 1
 pause 'Two'
 stop
 end
The program generates this display:

About to pause without comment ...
Pause - 1
Two

A C program that accomplishes the same function is as follows:

 main ()
 {
 int i = 1;
 char *s = "Two";
 int c;
 printf ("\nAbout to pause without comment ... ");
 c = getchar();

 printf ("\nPause - %d ", i);
 c = getchar();
 printf ("\n%s ", s);
 c = getchar();
 return;
 }

ANSI C has no special, dedicated mechanism to do what Fortran’s pause
statement can accomplish. Where the Fortran example program used the
pause statement to suspend execution, the C example program used a
standard terminal write and read to the terminal to produce the same effect.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: PRINT

Fortran print LABEL, VARIABLE
print *, VARIABLE

C Primary printf
C Secondary NONE

Fortran’s print statement is a less-functional write statement.
Where the write statement can handle several file types and control
error handling, the print statement directs output to one type of device
and has no error control. Print statements are bound to display data on
the same device as referenced by the read(*... and write(*...
statements: this is nearly always the terminal. The following Fortran
program demonstrate the print statement:

 program main
 character*3 c
 integer i
 real x
 c = 'abc'
 i = 123
 x = 4.5
 write (6,1)
 1 format (1H , 'PRINT under format control ...')
 print 2, c, i, x
 2 format (1H , a3, i4, f4.1)
 write (6,3)
 3 format (1H , 'PRINT using list-directed',
 - 'formatting ...')
 print *, c, i, x
 stop
 end
The program generates this display:

PRINT under format control ...
abc 123 4.5
PRINT using list-directed formatting ...
abc 123 4.500000

A C program that accomplishes the same function is as follows:

 main ()
 {
 char *c = "abc";
 int i = 123;
 float x = 4.5F;
 printf ("PRINT under format control ...\n");
 printf ("%3s %3i %3.1f\n", c, i, x);
 printf ("PRINT using list-directed formatting ...\n");
 printf ("%s %i %f\n", c, i, x);
 return;
 }

A print statement can display data under format control or with
list-directed formatting. In the Fortran example program, the format
statement referenced by the first print statement is similar to the
corresponding printf statement in the C example program. List-directed
output is produced when a print statement references the asterisk as
the format. Implementations differ, but it is typical to see five to ten
spaces separate each field under this Fortran’s list-directed form of print
output. The C example program explicitly includes spaces to separate
fields in the last printf statement.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: PROGRAM

Fortran program NAME
C Primary main()
C Secondary argc, argv

ANSI 77 Fortran introduced a statement to name the main program.
Typically, the compiler and/or the host operating system uses the name
main to refer to a program but this can be changed with the program
statement. The following Fortran program uses the program statement:

 program PROGRAM
 write (6,1)
 1 format (1H , 'PROGRAM Fortran statement: ',
 - 'example output ... PROGRAM.')
 stop
 end
The program generates this display:

PROGRAM Fortran statement: example output ... PROGRAM.
A C program that accomplishes the same function is as follows:

 main (int argc, char *argv[])
 {
 printf ("PROGRAM Fortran statement: "
 "example output ... %s.\n", argv[0]);
 return;
 }

These two programs use very different mechanisms to generate the
same display. The Fortran example program uses the Fortran program
statement to give the main program the name “program.” The C example
program accesses an array of program arguments to display the first such
argument (i.e., argv[0]). This first argument is always the name of the
command issued to executed this program. The C example program will
produce the example output, provided that it was executed with a
command “PROGRAM.”

In a larger context, what C offers the programmer is a way to write a

main program that accepts a varying number of arguments from the
command line. The two arguments to the main statement define the
number of arguments – argc – and an array of pointers to the character
strings that make up those arguments – argv. The first element of the
argument array – argv[0] – is reserved to hold the program name. Each
succeeding element holds the next command line argument for the
program. A C sample program that echoes command line arguments is as
follows:

 main (int argc, char *argv[])
 {
 int i;
 for (i=0; i<argc; i++) {
 printf ("\nArgument %2.2i: %s", i, argv[i]);
 }
 printf ("\n");
 return;
 }

If this example program was invoked as follows

PROGRAM a 2 c 4.56
it would generate this display:

Argument 00: PROGRAM
Argument 01: a
Argument 02: 2
Argument 03: c
Argument 04: 4.56

Any data type can be represented in the argv array because the argv
array holds each program argument in a character string. Passing
numbers as arguments is supported because functions like strtol, strtoul,
strtod can convert a string into a long integer, an unsigned long integer, or a
double number.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: READ

Fortran read (NUMBER, LABEL) VARIABLE
read (UNIT=NUM, REC=NUM, ERR=LAB) VAR
read (ARRAY, LAB, ERR=LAB) VARIABLE

C Primary fread, fscanf, fseek, ftell, sscanf
C Secondary ||, !=, %n, break, fclose, ferror, feof,

fopen, sizeof, sscanf, strlen, struct

Fortran file input is accomplished through the use of the read
statement. Four distinct file types can be processed by the read
statement: formatted sequential access files, list-directed
sequential access files, unformatted direct access files, and
internal files. Each of these file types will be described in turn.

Formatted sequential access files represent the modern
analogue of yesterday’s card reader. Such “flat files” are often the means
to export data from one application for subsequent input into another
application program. The following Fortran program reads a formatted
sequential access file and displays what was read:

 program main
 integer i, j, iunit
 real r
 character c*3
 iunit = 7
 open (unit=iunit, file='readsf.dat')
 do 6 j = 1, 3, 1
 read (iunit,1,err=2,end=7) i, r, c
 1 format (i1, 1x, f3.1, 1x, a3)
 go to 4
 2 continue
 write (6,3) j
 3 format (1H , 'READ error ... record ',
 - i1, ' skipped!')
 go to 6
 4 continue
 write (6,5) j, i, r, c
 5 format (1H , 'Record ', i5.5, ': ',

 - i1, 1x, f3.1, 1x, a3)
 6 continue
 7 continue
 write (6,8) j-1
 8 format (1H , 'EOF reached after record ', i5.5,
'.')
 close (unit=iunit)
 stop
 end
It uses the following data file

1 2.0 abc
2 3.0 def
3 xxx ghi
and generates this display:

Record 00001: 1 2.0 abc
Record 00002: 2 3.0 def
READ error ... record 3 skipped!
EOF reached after record 00003.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 int i, j;
 FILE *iunit;
 float r;
 char *c;
 int items;
 int bytes;
 iunit = fopen ("readsf.dat", "r");
 for (j=1; j<=3; j++) {
 items = fscanf (iunit, "%i %f %s%n\n",
 &i, &r, c, &bytes);
 if ((items != 3) ||
 (bytes != 9)) {
 printf ("READ error ... "
 "record %i skipped!\n", j);

 }
 else
 printf ("Record %5.5i: %1i %3.1f %3s\n",
 j, i, r, c);
 }
 printf ("EOF reached after record %5.5i.\n", j-1);
 fclose (iunit);
 return;
 }

Both programs open the same data file. By default, Fortran will open
the file with the keyword for the access option set to SEQUENTIAL and
the keyword for the form option set to FORMATTED. C’s fopen function
is explicitly told to open the file for input in text mode. Three records are
read from the file. Fortran’s read statement is programmed here with an
error trap that will inform the user, by record number, where the read error
occurred. C’s fscanf function reports the number of fields read in the items
variable and the number of bytes read, through the %n format, into the
bytes variable. Error control is maintained by comparing the value of both
the items and bytes variable to the known number of fields and bytes per
line (i.e., 3 and 9, respectively). When the erroneous third line of the data
file is processed, fscanf sets items to 1 to correspond to the successful
processing of the first field. However, it does not update the bytes variable
because the %n format appears after the field specification for the data
element in error. Finally, the number of records processed is reported to
the user and the single input file is closed.

List-directed sequential access files are convenient because
they bypass the rigid column alignment requirement of formatted files.
The following Fortran program reads three records from a file in a list-
directed format:

 program main
 integer i, j, iunit
 real r
 character c*3
 iunit = 7
 open (unit=iunit, file='readsl.dat')
 do 6 j = 1, 3, 1
 read (iunit,*,err=2,end=7) i, r, c
 go to 4

 2 continue
 write (6,3) j
 3 format (1H , 'READ error ... record ',
 - i1, ' skipped!')
 go to 6
 4 continue
 write (6,5) j, i, r, c
 5 format (1H , 'Record ', i5.5, ': ',
 - i1, 1x, f3.1, 1x, a3)
 6 continue
 7 continue
 write (6,8) j-1
 8 format (1H , 'EOF reached after record ', i5.5,
'.')
 close (unit=iunit)
 stop
 end
It uses this data file

1 2.0 'abc'
2 3.0 'def'
3 xxx 'ghi'
and generates this display:

Record 00001: 1 2.0 abc
Record 00002: 2 3.0 def
READ error ... record 3 skipped!
EOF reached after record 00003.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 int i, j, k;
 FILE *iunit;
 float r;
 char *c;
 int items;
 int bytes;

 iunit = fopen ("readsl.dat", "r");
 for (j=1; j<=3; j++) {
 items = fscanf (iunit, "%i %f %*c%s%n\n",
 &i, &r, c, &bytes);
 k = strlen (c);
 c[k-1] = '\0';
 if (items != 3)
 printf ("READ error ... "
 "record %i skipped!\n", j);
 else
 printf ("Record %5.5i: %1i %3.1f %s\n",
 j, i, r, c);
 }
 printf ("EOF reached after record %5.5i.\n", j-1);
 fclose (iunit);
 return;
 }

Both programs open the same data file. By default, Fortran will open
the file with the keyword for the access option set to SEQUENTIAL and
the keyword for the form option set to FORMATTED. C’s fopen function
is explicitly told to open the file for input in text mode. Three records are
read from the file. Fortran’s read statement is programmed here with an
error trap and that will inform the user, by record number, where the read
error occurred. C’s fscanf function reports the number of fields read in the
items variable and the number of bytes read, through the %n format, into
the bytes variable. Error control is maintained by comparing the value of
items variable to the known number of fields (i.e., 3). When the erroneous
third line of the data file is processed, fscanf sets items to 1 to correspond
to the successful processing of the first field. However, it does not update
the bytes variable because the %n format appears after the field
specification for the data element in error.

Fortran requires that character data must be enclosed in single
quotation marks when read under a list-directed format. The C example
program strips the first quotation mark through the use of the %*c format,
which ignores one character from the input file. Then, the strlen function is
used to determine the length of the string as read from the file. This length
will exclude the first quotation mark but include the second quotation mark.
After determining the length of the string as read, the second quotation

mark is over-written by the null character (i.e., \0), which marks the new
end of the string. Finally, the number of records processed is reported to
the user and the single input file is closed.

Unformatted direct access files are the only “structured” file
directly supported by Fortran. The following Fortran program reads three
records and then rereads the first record:

 program main
 integer i, j, k, iunit
 real r
 character c*3
 iunit = 7
 open (unit=iunit, file='readdf.dat',
 - access='direct', recl=11)
 do 6 j = 1, 4, 1
 k = j
 if (k .eq. 4) k = 1
 read (iunit,rec=k,err=2) i, r, c
 go to 4
 2 continue
 write (6,3) k
 3 format (1H , 'READ error ... record ',
 - i1, ' skipped!')
 go to 6
 4 continue
 write (6,5) k, i, r, c
 5 format (1H , 'Record ', i5.5, ': ',
 - i1, 1x, f3.1, 1x, a3)
 6 continue
 write (6,8) k
 8 format (1H , 'Last record read ',
 - 'was number ', i5.5, '.')
 close (unit=iunit)
 stop
 end
It generates this display:

Record 00001: 1 2.0 abc
Record 00002: 2 3.0 def
Record 00003: 3 4.0 ghi

Record 00001: 1 2.0 abc
Last record read was number 00001.

The input data file to the Fortran example program is the output data
file from the Fortran example program used to create a direct access file in
this chapter under the write† Fortran statement.

A C program that accomplishes the same function is as follows:
 #include <stdio.h>
 main ()
 {
 int j, k;
 FILE *iunit;
 struct binary { long i;
 float r;
 char c[4]; } record[1];
 int items;
 int count=1;
 long curpos;
 int error;
 long position;
 long bytes = 12;
 iunit = fopen ("readdc.dat", "rb");
 bytes = (long) sizeof (struct binary);
 for (j=1; j<=4; j++) {
 k = j;
 if (k == 4)
 k = 1;
 curpos = ftell (iunit);
 position = (k-1) * bytes;
 error = fseek (iunit, position, SEEK_SET);
 if (error != 0) {
 printf ("FSEEK position error!\n");
 break;
 }
 items = fread (record, sizeof (struct binary),
 count, iunit);
 if (items == count) {
 printf ("Record %5.5i: %ld %3.1f %s\n",
 k, record[0].i, record[0].r,
 record[0].c);

 }
 else
 printf ("READ error ... "
 "record %i skipped!\n", k);
 }
 printf ("Last record read was number %5.5i.\n", k);
 fclose (iunit);
 return;
 }

This C example program generated the same display as did the
Fortran example program. The input data file to the C example program is
the output data file from the C example program in this chapter used to
create a direct access file in the section that covers Fortran’s write†
statement.

Both program opened similar files that were nearly identical, differing
only the length of each logical record. Fortran wrote eleven bytes into the
file for each logical record: four for the integer variable, four for the
real variable, and three for the character string. C wrote twelve
bytes into the file for each logical record: four for the int variable, four for
the float variable, and four for the character string (i.e., three characters
plus the null character – \0 – used to terminate the string). Consequently,
direct access files that contain any character data are not interchangeable
between Fortran and C unless the null character is handled explicitly. For
files written by a Fortran program to be read by a C program, an additional
variable needs to be output after each character string. This variable
should be defined as

 character*1 null
and initialized as

 null = char (0)
For files written by a C program to be read by a Fortran program, an

additional variable defined just as the null variable above needs to be
read and disregarded after processing each character string.

File position in Fortran is specified by the rec option on the read
statement. File position in the C example program needs to be calculated.
C’s ftell function is used to determine the current position in the input file

measured in bytes from the beginning of the file. This could be used to
determine if the file was correctly positioned for the next read. The new
position is calculated as a function of the desired record number and the
number of bytes per logical record. C’s fseek function then advances the
file pointer the correct number of bytes from the beginning of the file to the
new position. If the file can not be positioned, fseek returns a non-zero
error number.

Variable lists for direct access input in Fortran are no different
from the corresponding lists for sequential access input. C’s fread function
performs unformatted input of an entire logical record at a time where the
individual variables are combined into a C struct construct. In the C
example program, individual variables i, r, and the c character array are
combined into a C struct named binary. One instance of this struct name
record[1] is then defined. C’s fread function reads all three variables at
once into the struct named record. The length of the struct is computed by
the sizeof function and only one instance of record is processed per read
because fread’s third argument, the variable count, is set to one. If file can
be read, fread returns the number of instances of record processed
correctly. If the file can not be read, fread returns a number that can be
used by two other C functions, ferror and feof, to identify the error and/or
determine if the end-of- file has been reached.

ANSI 77 standard Fortran permits in-memory buffers to be treated as
if they were files. The following Fortran program reads such a buffer:

 program main
 integer i, j
 real r
 character c*3
 character*9 buffer(3)
 buffer(1) = '1 2.0 abc'
 buffer(2) = '2 x.0 def'
 buffer(3) = '3 4.0 ghi'
 do 6 j = 1, 3, 1
 read (buffer(j),1,err=2) i, r, c
 1 format (i1, 1x, f3.1, 1x, a3)
 go to 4
 2 continue
 write (6,3) j
 3 format (1H , 'READ error ... buffer ',

 - i1, ' skipped!')
 go to 6
 4 continue
 write (6,5) j, i, r, c
 5 format (1H , 'Buffer ', i5.5, ': ',
 - i1, 1x, f3.1, 1x, a3)
 6 continue
 write (6,8) j-1
 8 format (1H , 'Last buffer processed was ', i5.5,
'.')
 stop
 end
The program generates this display:

Buffer 00001: 1 2.0 abc
READ error ... buffer 2 skipped!
Buffer 00003: 3 4.0 ghi
Last buffer processed was 00003.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 #include <stddef.h>
 #include <stdlib.h>
 main ()
 {
 int i, j;
 float r;
 char *c;
 char *buffer[3] = { "1 2.0 abc",
 "2 x.0 def",
 "3 4.0 ghi" };
 int items;
 for (j=0; j<=2; j++) {
 items = sscanf (buffer[j], "%i %f %s",
 &i,&r,c);
 if (items !=3) {
 printf ("READ error ... "
 "buffer %i skipped!\n", j+1);
 }

 else
 printf ("Buffer %5.5i: %i %3.1f %3s\n",
 j+1, i, r, c);
 }
 printf ("Last buffer processed was %5.5i.\n", j);
 return;
 }

Both programs “read” an in-memory character array named
buffer. Fortran supports processing such character arrays through the
use of the read statement. If an error occurs, the err option on the
read statement is exercised, and control passes to series of statements
that will display an error message. C’s sscanf function reads character
strings from an array of pointers to those strings. Values for numeric
variables are read through the address – &i and &r, respectively – for those
variables. Values for character strings are read through pointers for those
variables (i.e., the *c variable). The number of fields correctly read is
returned from the sscanf function into the variable items. If three fields are
not read, an error message is produced. Finally, both programs report the
number of buffers processed.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: REAL

Fortran real VARIABLE
real FUNCTION_NAME

C Primary float
C Secondary F

Variables, arrays, and functions that deal with single precision floating
point numbers are defined in Fortran with the real statement. Each use
of the real statement is demonstrated in the following program:

 program main
 real variable
 real array(3)
 real farg
 real fvalue
 real fname
 variable = 1.0
 array(1) = 2.0
 array(2) = 3.0
 array(3) = 4.0
 farg = array(3)
 fvalue = fname (farg)
 write (6,1) variable, array, fvalue
 1 format (1H , 5f4.1)
 stop
 end
 real function fname (farg)
 real farg
 fname = farg + 1.0
 return
 end
The program generates this display:

 1.0 2.0 3.0 4.0 5.0
A C program that accomplishes the same function is as follows:

 main()

 {
 float variable = 1.0F;
 float array[3] = { 2.0F, 3.0F, 4.0F };
 float farg = array[2];
 float fvalue;
 float fname (float farg);
 fvalue = fname (farg);
 printf ("%3.1f %3.1f %3.1f %3.1f %3.1f\n",
 variable, array[0], array[1], array[2],
 fvalue);
 return;
 }
 float fname (float farg)
 {
 return farg + 1.0F;
 }

ANSI 77 Fortran defines a single form of the real data type. Many
Fortran compilers support two additional forms: real*4 as a synonym
for the unqualified real statement and real*8 as a synonym for the
double precision data type. Fortran’s real or real*4 is C’s float
data type, and real*8 is represented by C’s double and long double (see
Table 3-2†). A major difference between Fortran’s real and C’s float
data types is the syntax used to initialize variables. Fortran real
constants are simple digit strings with a decimal point and/or an explicit E
exponent, such as the following:

123.0
1.23E2 for 123
1E2 for 100
C uses an f or F suffix to distinguish a float from a double floating point
constant such as

123.0f or 123.0F
1.23e2F or 1.23E2f for 123
1E2f or 1e2F for 100

Chapter 3† presents some additional details about Fortran and C
floating point data types.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: RETURN

Fortran return
return NUMBER

C Primary return
C Secondary &, *

Concluding every subprogram, Fortran’s return statement comes
in two forms. The simple form of the return statement has no
arguments and transfers control from the subprogram to the calling routine
at the point at which the subprogram was invoked. A more complex form
takes one argument which is an index into a list of statement labels. The
list is an argument to the subprogram and directs control to be transferred
to one of several alternate returns in the calling routine. The following
Fortran example program demonstrates both forms of return statement:

 program main
 integer i, j, k
 integer fun
 i = 1
 call sub (i, j)
 k = fun (j)
 write (6,1) i, j, k
 1 format (1H , 3i2)
 do 6 i = 1, 2, 1
 call alt (i, *2, *4)
 go to 4
 2 continue
 write (6,3) i
 3 format (1H , 'Return #', i1,
 - ' to label 2 ')
 go to 6
 4 continue
 write (6,5) i
 5 format (1H , 'Return #', i1,
 - ' to label 4 ')
 6 continue
 stop
 end

 subroutine sub (i, j)
 integer i, j
 j = i + 1
 return
 end
 integer function fun (j)
 integer j
 fun = j + 1
 return
 end
 subroutine alt (i, *, *)
 integer i
 if (i .eq. 1) return 1
 if (i .eq. 2) return 2
 return
 end
The program generates this display:

 1 2 3
Return #1 to label 2
Return #2 to label 4
A C program that accomplishes the same function is as follows:

 void main ()
 {
 int i=1, j, k;
 void sub (int i, int *j);
 int fun (int j);
 int alt (int j);
 sub (i, &j);
 k = fun (j);
 printf ("%i %i %i\n", i, j, k);
 for (i=1; i<=2; i++) {
 j = alt (i);
 if (j == 1) {
 printf ("Return #%i to label 2\n", i);
 }
 else
 printf ("Return #%i to label 4\n", i);

 }
 return;
 }
 void sub (int i, int *j)
 {
 *j = i + 1;
 return;
 }
 int fun (int j)
 {
 return j + 1;
 }
 int alt (int j)
 {
 return j;
 }

Both programs invoke the subprograms: a subroutine sub, a
function fun, and an example of alternate return subroutine alt.

Subprogram sub takes its first argument, i, adds one to it, and
returns the result in the second argument, j. In the C version, sub is
invoked with the second argument using a &j syntax, and that second
argument is declared and manipulated in the function with a *j syntax.
When invoked, the address of the main program variable j is passed to the
function through the use of the & operator. On receipt, the second
argument of the sub function accepts that address in the form of a pointer
to an int data type and manipulates the data element at the address
pointed to by that pointer, *j.

The second subprogram, fun, is a function in both the Fortran and
C sense. Both versions accept a single argument, add one to it, and send
the result back to the main program either as the value of the function
name in Fortran or through an argument to the return statement in C.

Alt, the third subprogram, exhibits Fortran’s “alternate return”
version of the return statement. Depending on the value transferred to
the main program by the return statement, one or the other of the
display statements will be executed. If alt exits without triggering either
of the “alternate return” versions of the return statement, then control
will transfer to the statement following the call to this subroutine. The C

example program includes a version of the alt subprogram that causes the
same result as the Fortran program to occur but uses a hand-coded
construct. That is, C’s return statement does not have any formal
mechanism to effect a transfer of control like Fortran’s alternate return.
{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: REWIND

Fortran rewind (UNIT=N, IOSTAT=V, ERROR=LAB)
rewind NUMBER

C Primary rewind
C Secondary &, fclose, FILE, fopen, fprintf, fscanf

A program’s position in a file can be reset to the beginning of the file
through the use of the rewind statement. It is commonly used to
“switch” between writing and reading a sequential file: write to the
file, rewind it, and then read from the file. The following Fortran
program processes a sequential file in just such a manner:

 program main
 integer i
 integer funit
 integer iiostat
 funit = 7
 open (unit=funit, file='rewind.dat')
 do 2 i = 1, 3, 1
 write (funit,1) i
 1 format (i5.5)
 2 continue
 rewind (unit=funit, iostat=iiostat)
 if (iiostat .ne. 0) then
 write (6,3) iiostat
 3 format (1H , 'REWIND error ... ',
 - 'IOSTAT = ', i5.5)
 stop
 else
 write (6,4)
 4 format (1H , 'File [rewind.dat] is
rewound.' /)
 endif
 do 7 i = 1, 3, 1
 read (funit,5) j
 5 format (i5)
 write (6,6) i, j
 6 format (1H , 'Record ', i1, ': ', i5.5)

 7 continue
 close (unit=funit)
 stop
 end
The program generates this display:

File [rewind.dat] is rewound.
Record 1: 00001
Record 2: 00002
Record 3: 00003
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 int i;
 int j;
 FILE *funit;
 funit = fopen ("rewind.dat", "w+");
 for (i=1; i<=3; i++) {
 fprintf (funit, "%5.5i\n", i);
 }
 rewind (funit);
 printf ("File [rewind.dat] rewound.\n\n");
 for (i=1; i<=3; i++) {
 fscanf (funit, "%i", &j);
 printf ("Record %i: %5.5i\n", i, j);
 }
 i = fclose (funit);
 }

Both program open the file for sequential, formatted output, and
populate the file with three records. The Fortran example program has
several error handling statements following the rewind statement in case
the file in question could not be rewound. C’s rewind statement has no
error control: if for any reason the file can not be rewound, the program
will not be able to receive any notification of this problem. ANSI standard
C defines the rewind function as a void function that does not return a value

to the calling program. Quite a number of compilers implement this
function differently and allow it to return a value – usually defined as a
success/failure indicator – to the calling program.

Finally, both programs read the file and display its contents. In the C
example program, the last argument to the fscanf function that reads the
file is &j. The address operator, &, is necessary because in reading the
file, fscanf will update the value of the variable j, and it can do it only
through the address of that variable.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: SAVE

Fortran save VARIABLE
save / COMMON_BLOCK_NAME /
save

C Primary static
C Secondary NONE

Variables local to a subprogram typically do not retain their value after
the subprogram completes execution. If desired, the programmer can
explicitly retain these values by naming the variable in a save statement.
ANSI 77 standard Fortran cautions that variables in named common will
not retain their value from subprogram to subprogram unless that common
area appears in a save statement in the main program. Most compilers
will automatically retain the value of variables in named common, but the
save statement is the only definite, standard and approved method to do
so. The following Fortran sample program demonstrates the effect of the
save statement:

 program main
 integer i
 integer globali, locali
 real globalr, localr
 character*3 globalc, localc
 common / area / globali, globalr, globalc
 save / area /
 globali = 10
 globalr = 20.0
 globalc = 'ABC'
 locali = 1
 localr = 2.0
 localc = 'abc'
 write (6,1) locali, localr, localc,
 - globali, globalr, globalc
 1 format (/ 1H , 2(1x, i2, 1x, f4.1, 1x, 1H[, a3,
1H]))
 do 3 i = 1, 2, 1
 write (6,2) i

 2 format (/ 1H , 'CALL #', i1, ' to
subroutine ...')
 call sub
 3 continue
 write (6,4)
 4 format (/ 1H , 'MAIN regained control ...')
 write (6,1) locali, localr, localc,
 - globali, globalr, globalc
 stop
 end
 subroutine sub
 integer globali, locali
 real globalr, localr
 character*3 globalc, localc
 common / area / globali, globalr, globalc
 save locali,localr,localc
 write (6,1) locali, localr, localc,
 - globali, globalr, globalc
 1 format (/ 1H , 2(1x, i2, 1x, f4.1, 1x, 1H[, a3,
1H]))
 locali = 3
 localr = 4.0
 localc = 'def'
 write (6,1) locali, localr, localc,
 - globali, globalr, globalc
 return
 end
The program generates this display:

 1 2.0 [abc] 10 20.0 [ABC]
CALL #1 to subroutine ...
 0 .0 [] 10 20.0 [ABC]
 3 4.0 [def] 10 20.0 [ABC]
CALL #2 to subroutine ...

 3 4.0 [def] 10 20.0 [ABC]
 3 4.0 [def] 10 20.0 [ABC]
MAIN regained control ...
 1 2.0 [abc] 10 20.0 [ABC]
A C program that accomplishes the same function is as follows:

 int globali = 10;
 float globalr = 20.0F;
 char *globalc = "ABC";
 main ()
 {
 int i;
 int locali = 1;
 float localr = 2.0F;
 char *localc = "abc";
 void sub ();
 printf ("\n %2i %4.1f [%3s] %2i %4.1f [%3s]\n",
 locali,localr,localc,globali,globalr,globalc);
 for (i=1; i<=2; i++) {
 printf ("\nCALL #%i to subroutine ...\n", i);
 sub();
 }
 printf ("\nMAIN regained control ...\n");
 printf ("\n %2i %4.1f [%3s] %2i %4.1f [%3s]\n",
 locali,localr,localc,globali,globalr,globalc);
 return;
 }
 void sub ()
 {
 static int locali;
 static float localr;
 static char *localc;
 printf ("\n %2i %4.1f [%3s] %2i %4.1f [%3s]\n",
 locali,localr,localc,globali,globalr,globalc);
 locali = 3;
 localr = 4.0;

 localc = "def";
 printf ("\n %2i %4.1f [%3s] %2i %4.1f [%3s]\n",
 locali,localr,localc,globali,globalr,globalc);
 return;
 }

The program generates the same display as the Fortran example
program except for the third line (i.e., directly below the line that begins
CALL #1), which reads as follows:

 0 0.0 [(null)] 10 20.0 [ABC]
Both programs carry three variables – globali, globalr, and

globalc – that are available to any subprogram. Fortran does this by
mentioning them in a common statement and, in turn, naming that
common area in a save statement in the main program. C does this by
declaring all three variables before the main statement in the main
program. Both programs declare two sets of local variables – locali,
localr, and localc. The first set of local variables has a scope
restricted to the main program. Being in the main program, the value of
these variables are always available and would never need to be explicitly
“saved.” The second set are created in the single subprogram called
sub. When the subprogram is executed for the first time, these variables
have no initial value. Fortran would typically set them to zero or blank as
appropriate: in fact, values for these “local” variables are

 0 .0 [] 10 20.0 [ABC]
when the subprogram sub is executed for the first time. C would typically
set them to zero or null as appropriate such as

 0 0.0 [(null)] 10 20.0 [ABC]
Both program preserve the value of these “local” variables for the

next execution of the subprogram sub: Fortran uses the save
statement, and C uses the static qualifier on the type definition statement
for these variables.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction

":chap05:MAIN}

Chapter 5 Concordance: STOP

Fortran stop
stop NUMBER
stop STRING

C Primary exit
C Secondary abort, EXIT_FAILURE, EXIT_SUCCESS,

return, switch

Execution of a program can be terminated at any point in Fortran by
using the stop statement. Typically, a single stop statement will
appear at the end of the main program. Fortran’s stop statement can
take one argument with can be a 1-to-5 digit number or a character string.
ANSI 77 standard Fortran requires that the value of this argument is then
“accessible” to the host operating system. Typically, the host operating
system will display the value of the argument to the stop statement.
The following Fortran program can execute any one of the three forms of
the stop statement:

 program main
 integer i
 i = 1
 go to (1, 3, 5), i
 1 continue
 write (6,2)
 2 format (1H , 'Executing STOP N statement ...')
 stop 12345
 3 continue
 write (6,4)
 4 format (1H , 'Executing STOP CHARACTER ',
 - 'statement ...')
 stop 'ABCDE'
 5 continue
 write (6,6)
 6 format (1H , 'Executing STOP statement ...')
 stop
 end
The program generates this display:

Executing STOP N statement ...
12345
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 #include <stdlib.h>
 main ()
 {
 int i=1;
 switch (i) {
 case 1: goto lab_1;
 case 2: goto lab_3;
 default: goto lab_5;
 }
 lab_1: printf ("Executing STOP N statement ...\n");
 exit (12345);
 lab_3: printf ("Executing STOP CHARACTER "
 "statement ...\n");
 exit ('A');
 lab_5: printf ("Executing STOP statement ...\n");
 exit (EXIT_SUCCESS);
 }

C’s exit function can signal the host operating system whether it
completed successfully or encountered a failure. The values of
EXIT_SUCCESS and EXIT_FAILURE are defined in the C standard file
stdlib.h and typically are zero and one, respectively. The host operating
system accepts these values as indicators of program success or failure.
Arguments to the exit function with any other value than EXIT_SUCCESS
or EXIT_FAILURE (such as the number 12345 or the character A in the C
example program) have no standard interpretation. In other words, the
host operating system would handle such values in whatever manner
chosen by the implementer.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: SUBROUTINE

Fortran subroutine NAME (VARIABLE, *LABEL)
C Primary NONE
C Secondary static, void

Most Fortran programs are built as a collection of subroutines and
functions. These subprograms are used to partition the program’s work
into manageable units that can be programmed coherently. The following
Fortran program exercise two subroutines with single variable, array
element, and whole array arguments:

 program main
 integer j
 integer i, iarray(3)
 real r, rarray(3)
 character*3 c, carray(3)
 i = 1
 iarray(1) = 2
 iarray(2) = 3
 iarray(3) = 4
 r = 5.0
 rarray(1) = 6.0
 rarray(2) = 7.0
 rarray(3) = 8.0
 c = 'ix '
 carray(1) = 'x '
 carray(2) = 'xi '
 carray(3) = 'xii'
 write (6,1) i, iarray, r, rarray, c, carray
 1 format (/ 1H , 'MAIN: ' 4 (1x, i3.3),
 - 4 (1x, f4.1),
 - 4 (1x, 1H[, a3, 1H]))
 write (6,2)
 2 format (1H)
 call sub1 (i, r, c)
 write (6,2)
 call sub1 (1, 5.0, 'ix ')
 write (6,2)

 do 3 j = 1, 3, 1
 call sub1 (iarray(j), rarray(j), carray(j))
 3 continue
 write (6,2)
 call sub2 (iarray, rarray, carray)
 write (6,1) i, iarray, r, rarray, c, carray
 write (6,2)
 stop
 end
 subroutine sub1 (i, r, c)
 integer i
 real r
 character*3 c
 write (6,1) i, r, c
 1 format (1H , 'SUB1: ', 1x, i3.3, 13x,
 - f4.1, 16x, 1H[, a3, 1H])
 return
 end
 subroutine sub2 (iarray, rarray, carray)
 integer iarray(3)
 real rarray(3)
 character*3 carray(3)
 write (6,1) iarray, rarray, carray
 1 format (1H , 'SUB2: ', 4x, 3 (1x, i3.3),
 - 5x, 3 (1x, f4.1),
 - 6x, 3 (1x, 1H[, a3,
1H]))
 return
 end
The program generates this display: (n.b., program and subprogram
names have been removed):

001 002 003 004 5.0 6.0 7.0 8.0 [ix] [x] [xi]
[xii]
001 5.0 [ix]
001 5.0 [ix]
002 6.0 [x]

003 7.0 [xi]
004 8.0 [xii]
002 003 004 6.0 7.0 8.0 [x] [xi] [xii]
001 002 003 004 5.0 6.0 7.0 8.0 [ix] [x] [xi]
[xii]
A C program that accomplishes the same function is as follows:

 main ()
 {
 int j;
 int i = 1;
 int iarray[3] = { 2, 3, 4 };
 float r = 5.0F;
 float rarray[3] = { 6.0F, 7.0F, 8.0F };
 char *c = "ix ";
 char *carray[3] = { "x ", "xi ", "xii" };
 void sub1 (int, float, char *);
 void sub2 (int iarray[], float rarray[],
 char *carray[]);
 printf ("\nMAIN: %3.3i %3.3i %3.3i %3.3i "
 "%4.1f %4.1f %4.1f %4.1f "
 "[%3s] [%3s] [%3s] [%3s]\n",
 i, iarray[0], iarray[1], iarray[2],
 r, rarray[0], rarray[1], rarray[2],
 c, carray[0], carray[1], carray[2]);
 printf ("\n");
 sub1 (i, r, c);
 printf ("\n");
 sub1 (1, 5.0, "ix ");
 printf ("\n");
 for (j=0; j<=2; j++) {
 sub1 (iarray[j], rarray[j], carray[j]);
 }
 printf ("\n");
 sub2 (iarray, rarray, carray);
 printf ("\nMAIN: %3.3i %3.3i %3.3i %3.3i "
 "%4.1f %4.1f %4.1f %4.1f "

 "[%3s] [%3s] [%3s] [%3s]\n",
 i, iarray[0], iarray[1], iarray[2],
 r, rarray[0], rarray[1], rarray[2],
 c, carray[0], carray[1], carray[2]);
 printf ("\n");
 return;
 }
 void sub1 (int i, float r, char *c)
 {
 printf ("SUB1: %3.3i "
 "%4.1f "
 "[%3s]\n",
 i, r, c);
 return;
 }
 void sub2 (int iarray[], float rarray[],
 char *carray[])
 {
 printf ("SUB2: %3.3i %3.3i %3.3i"
 " %4.1f %4.1f %4.1f"
 " [%3s] [%3s] [%3s]\n",
 iarray[0], iarray[1], iarray[2],
 rarray[0], rarray[1], rarray[2],
 carray[0], carray[1], carray[2]);
 return;
 }

Both programs invoke subprogram sub1 in two different ways.
First, the single variables i, r, and c are specified as the arguments to
sub1. Second, sub1 is invoked three times; and each time a different
element of the arrays iarray, rarray, and carray are specified
as arguments. The second subroutine, sub2, is then invoked with all
three arrays – iarray, rarray, and carray – passed in their entirety
as arguments.

Before the ANSI C standard was developed, the data type of a C
function was declared only when it was not an integer, and arguments were
declared in separate lines. For example, the first few lines of a pre-ANSI
version of the C example program sub1 function would be as follows:

 void sub1 ()
 int i;
 float r;
 char *c;
 {

 (body of function)
 }

and the function would have been declared in the main program as

 void sub1 ();

Advantages of the current ANSI specification is that the number and type of
a function’s arguments are known by the main program, and the first line of
the function is virtually a duplicate of the function prototype statement that
appeared in the main program.

Fortran requires that each subroutine or function name must
be unique across the entire program. C does not have such a
requirement. In C, if a function is declared with a static qualifier, then it is
local to the source code file in which it appears. Static functions supersede
a global function of the same name. Furthermore, static functions can not
be invoked by any function that is not in the same source code file. For
example, the function sub1 is defined globally in this source code file

 main ()
 {
 void sub1 ();
 void static2 ();
 printf ("STATIC1 source code file: "
 "top of MAIN program.\n");
 sub1();
 static2();
 sub1();
 printf ("STATIC1 source code file: "
 "bottom of MAIN program.\n");
 return;
 }
 void sub1 ()
 {

 printf ("STATIC1 source code file: "
 "SUB1 function.\n");
 return;
 }

In this source code file, sub1 is declared locally:

 void static2 ()
 {
 static void sub1 ();
 printf ("STATIC2 source code file: "
 "top of STATIC2 function.\n");
 sub1();
 printf("STATIC2 source code file: "
 "bottom of STATIC2 function.\n");
 return;
 }
 static void sub1 ()
 {
 printf ("\nSTATIC2 source code file: "
 "SUB1 function.\n\n");
 return;
 }

When both source code files are compiled and linked as one program and
then run, the following display is generated:

STATIC1 source code file: top of MAIN program.
STATIC1 source code file: SUB1 function.
STATIC2 source code file: top of STATIC2 function.
STATIC2 source code file: SUB1 function.
STATIC2 source code file: bottom of STATIC2 function.
STATIC1 source code file: SUB1 function.
STATIC1 source code file: bottom of MAIN program.

This program demonstrates that different functions with the same
name can coexist in the same program, with only one restriction: at most,
one version of the function is global and all others are declared static in the
source code file in which they appear.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Concordance Fortran
Statement ":next()}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 5 Concordance: WRITE

Fortran write (NUMBER, LABEL) VARIABLE
write (UNIT=N,REC=N,ERR=LAB) VARIABLE
write (ARRAY, LAB, ERR=LAB) VARIABLE

C Primary fprintf, fwrite, sprintf
C Secondary !=, fclose, FILE, fopen, fseek, sizeof,

struct

Fortran file output is accomplished through the use of the write
statement. Four distinct file types can be processed by the write
statement: formatted sequential access files, list-directed
sequential access files, unformatted direct access files, and
internal files. Each of these file types will be described in turn.

Formatted sequential access files represent the modern
analogue of yesterday’s line printer. Such “flat files” are often the means
to export data from one application for subsequent processing by another
application program. The following Fortran program writes a
sequential access file and displays what is being written:

 program main
 integer i(3), j, iunit
 real r(3)
 character*3 c(3)
 data i / 1, 2, 3 /
 data r / 2.0, 3.0, 4.0 /
 data c / 'abc', 'def', 'ghi' /
 iunit = 7
 open (unit=iunit, file='writesf.dat')
 do 6 j = 1, 3, 1
 write (iunit,1,err=2) i(j), r(j), c(j)
 1 format (i1, 1x, f3.1, 1x, a3)
 go to 4
 2 continue
 write (6,3) j
 3 format (1H , 'WRITE error ... record ',
 - i1, ' skipped!')
 go to 6

 4 continue
 write (6,5) j, i(j), r(j), c(j)
 5 format (1H , 'Record ', i5.5, ': ',
 - i1, 1x, f3.1, 1x, a3)
 6 continue
 write (6,8) j-1
 8 format (1H , 'Last data record was ', i5.5,
'.')
 close (unit=iunit)
 stop
 end
It uses this data file

1 2.0 abc
2 3.0 def
3 4.0 ghi
and generates this display:

Record 00001: 1 2.0 abc
Record 00002: 2 3.0 def
Record 00003: 3 4.0 ghi
Last data record was 00003.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 int j;
 int i[3] = { 1, 2, 3 };
 float r[3] = { 2.0F, 3.0F, 4.0F };
 char *c[3] = { "abc", "def", "ghi" };
 FILE *iunit;
 int bytes;
 iunit = fopen ("writesf.dat", "wa");
 for (j=0; j<=2; j++) {
 bytes = fprintf (iunit, "%i %3.1f %3s\n",
 i[j], r[j], c[j]);
 if (bytes < 0) {
 printf ("WRITE error ... "

 "record %i skipped!\n", j);
 }
 else
 printf ("Record %5.5i: %i %3.1f %3s\n",
 j, i[j], r[j], c[j]);
 }
 printf ("Last data record was %5.5i.\n", j);
 fclose (iunit);
 return;
 }

Both programs open the same type of output file. By default, Fortran
will open the file with the keyword for the access option set to
SEQUENTIAL and the keyword for the form option set to FORMATTED.
C’s fopen function is explicitly told to open the file for output to the file’s end
in text mode. Then, three records are written into the file. Fortran’s
write statement is programmed here with an error trap that will inform the
user, by record number, where the write error occurred. C’s fprintf function
returns the number of bytes written into the file. The program displays an
error message if fprintf signals a problem in updating the file (by returning a
negative number as the number of bytes written). Finally, the number of
records written is reported to the user. and the single output file is closed.

List-directed sequential access files are convenient because
they avoid the requirement to develop a detailed output layout and to code
a format statement. The following Fortran program writes three records
into a file in a list-directed format:

 program main
 integer i(3), j, iunit
 real r(3)
 character*3 c(3)
 data i / 1, 2, 3 /
 data r / 2.0, 3.0, 4.0 /
 data c / 'abc', 'def', 'ghi' /
 iunit = 7
 open (unit=iunit, file='writeslf.dat')
 do 6 j = 1, 3, 1
 write (iunit,*,err=2) i(j), r(j), c(j)
 go to 4
 2 continue

 write (6,3) j
 3 format (1H , 'WRITE error ... record ',
 - i1, ' skipped!')
 go to 6
 4 continue
 write (6,5) j, i(j), r(j), c(j)
 5 format (1H , 'Record ', i5.5, ': ',
 - i1, 1x, f3.1, 1x, a3)
 6 continue
 write (6,8) j-1
 8 format (1H , 'Last data record was ', i5.5,
'.')
 close (unit=iunit)
 stop
 end
It creates this output file:

 1 2.000000abc
 2 3.000000def
 3 4.000000ghi
The program also generates this display:

Record 00001: 1 2.0 abc
Record 00002: 2 3.0 def
Record 00003: 3 4.0 ghi
Last data record was 00003.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 int j;
 int i[3] = { 1, 2, 3 };
 float r[3] = { 2.0F, 3.0F, 4.0F };
 char *c[3] = { "abc", "def", "ghi" };
 FILE *iunit;
 int bytes;
 iunit = fopen ("writeslc.dat", "wa");
 for (j=0; j<=2; j++) {

 bytes = fprintf (iunit, "%i %f %s\n",
 i[j], r[j], c[j]);
 if (bytes < 0) {
 printf ("WRITE error ... "
 "record %i skipped!\n", j);
 }
 else
 printf ("Record %5.5i: %i %3.1f %3s\n",
 j, i[j], r[j], c[j]);
 }
 printf ("Last data record was %5.5i.\n", j);
 fclose (iunit);
 return;
 }

It creates this output file:

1 2.000000 abc
2 3.000000 def
3 4.000000 ghi
The program also generates the identical display as the Fortran example
program.

Both programs open the same type of output file. By default, Fortran
will open the file with the keyword for the access option set to
SEQUENTIAL and the keyword for the form option set to FORMATTED.
C’s fopen function is explicitly told to open the file for output to the file’s end
in text mode. Then three records are written into the file. Fortran’s
write statement is programmed here with an error trap that will inform the
user, by record number, where the write error occurred. Fortran writes
each numeric value, right justified, into an implementation-defined fixed-
length field (i.e., 12 bytes long for integers and 16 bytes long for
reals) and left-justifies character data into a field exactly as long as
the character string. C’s fprintf function returns the number of bytes
written into the file. The program displays an error message if fprintf
signals a problem in updating the file (by returning a negative number as
the number of bytes written). C writes each field separated by as many
spaces as appear between each format specification in the fprintf
statement. Finally, the number of records written is reported to the user,
and the single output file is closed.

Unformatted direct access files are the only “structured” file
directly supported by Fortran. The following Fortran program writes three
records:

 program main
 integer i(3), j, iunit
 real r(3)
 character*3 c(3)
 data i / 1, 2, 3 /
 data r / 2.0, 3.0, 4.0 /
 data c / 'abc', 'def', 'ghi' /
 iunit = 7
 open (unit=iunit, file='writedf.dat',
 - access='direct', recl=11)
 do 6 j = 1, 3, 1
 write (iunit,rec=j,err=2) i(j), r(j), c(j)
 go to 4
 2 continue
 write (6,3) j
 3 format (1H , 'WRITE error ... record ',
 - i1, ' skipped!')
 go to 6
 4 continue
 write (6,5) j, i(j), r(j), c(j)
 5 format (1H , 'Record ', i5.5, ': ',
 - i1, 1x, f3.1, 1x, a3)
 6 continue
 write (6,8) j-1
 8 format (1H , 'Last data record was ', i5.5,
'.')
 close (unit=iunit)
 stop
 end
The program generates this display:

Record 00001: 1 2.0 abc
Record 00002: 2 3.0 def
Record 00003: 3 4.0 ghi
Last data record was 00003.

A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main ()
 {
 int j;
 FILE *iunit;
 int items;
 int count=3;
 struct binary { long i;
 float r;
 char c[4]; }
 record[3] =
 { 1L, 2.0F, 'a','b','c','\0',
 2L, 3.0F, 'd','e','f','\0',
 3L, 4.0F, 'g','h','i','\0' };
 iunit = fopen ("writedc.dat", "wb+");
 items = fwrite (record, sizeof (struct binary),
 count, iunit);
 for (j=0; j<=2; j++) {
 printf ("Record %5.5i: %ld %f %s\n",
 j, record[j].i, record[j].r, record[j].c);
 }
 printf ("Last data record was %5.5i.\n", j);
 fclose (iunit);
 return;
 }

It generates a display identical to the Fortran example program.
Both program opened similar files. These two files were nearly

identical but differ in the length of each logical record. Fortran wrote
eleven bytes into the file for each logical record: four for the integer
variable, four for the real variable, and three for the character string.
C wrote twelve bytes into the file for each logical record: four for the int
variable, four for the float variable, and four for the character string (i.e.,
three characters plus the null character – \0 – used to terminate the string).
Consequently, direct access files that contain any character data are not
inter-changeable between Fortran and C unless the null character is
handled explicitly. For files written by a Fortran program to be read by a C
program, an additional variable needs to be output after each character

string. This variable should be defined as

 character*1 null
and initialized as

 null = char (0)
For files written by a C program to be read by a Fortran program, an
additional variable defined just as the null variable above needs to be
read and disregarded after processing each character string.

Fortran wrote each record individually from integer, real, and
character three-element arrays. C’s fwrite function performs
unformatted output of the entire file at a time where the individual variables
are combined into a C struct construct. In the C example program,
individual variables i, r, and the c character array are combined into a C
struct named binary. Three instances of this struct, record[3], are then
defined. C’s fwrite function writes all three variables across all three
instances at once into the file. The length of the struct is computed by the
sizeof function; and all three instances of record is processed in one write
because fwrite’s third argument, the variable count, is set to three. If the
file can be written, fwrite returns the number of instances of record
processed correctly (i.e., variables items and count will be equal).

The C example program could have been written to write one record
at a time with the following code

 count = 1
 for (j=0; j<=2; j++) {
 items = fwrite (&record[j],
 sizeof (struct record[j]),
 count, iunit)
 }

Under that syntax, any given record could be re-written by positioning
the file to the beginning of that record as

 position = (j - 1) * (sizeof (record[j]));
 fseek (iunit, position, SEEK_SET);

changing the value of record[j].i, record[j].r, and/or record[j].c, and then
invoking fwrite to update the file. This method of file positioning is the

same one used earlier in this chapter in the section on the Fortran read†
statement.

ANSI 77 standard Fortran permits in-memory buffers to be treated as
if they were files. The following Fortran program writes such a buffer:

 program main
 integer i(3), j
 real r(3)
 character*3 c(3)
 character*9 buffer(3)
 data i / 1, 2, 3 /
 data r / 2.0, 3.0, 4.0 /
 data c / 'abc', 'def', 'ghi' /
 do 6 j = 1, 3, 1
 write (buffer(j),1,err=2) i(j), r(j), c(j)
 1 format (i1, 1x, f3.1, 1x, a3)
 go to 4
 2 continue
 write (6,3) j
 3 format (1H , 'WRITE error ... buffer ',
 - i1, ' skipped!')
 go to 6
 4 continue
 write (6,5) j, buffer(j)
 5 format (1H , 'Record ', i5.5, ': ', a9)
 6 continue
 write (6,8) j-1
 8 format (1H , 'Last data buffer was ', i5.5,
'.')
 stop
 end
The program generates this display:

Record 00001: 1 2.0 abc
Record 00002: 2 3.0 def
Record 00003: 3 4.0 ghi
Last data buffer was 00003.
A C program that accomplishes the same function is as follows:

 #include <stdio.h>
 main()
 {
 int j;
 int i[3] = { 1, 2, 3 };
 float r[3] = { 2.0, 3.0, 4.0 };
 char *c[3] = { "abc", "def", "ghi" };
 struct record { char cc[10]; } buffer[3];
 int bytes;
 for (j=0; j<=2; j++) {
 bytes = sprintf (buffer[j].cc, "%i %3.1f %3s",
 i[j], r[j], c[j]);
 if (bytes != 9) {
 printf ("Write error ... "
 "buffer %i skipped!\n", j+1);
 }
 else
 printf ("Record %5.5i: %s\n",
 j+1, buffer[j].cc);
 }
 printf ("Last data buffer was %5.5i.\n", j);
 return;
 }

Both programs “write” an in-memory character array named
buffer. Fortran declares a three element array called buffer in
which each element is nine characters long. C specifies a struct of a type
named record that contains a single ten-character array and declares three
instances of such a struct to exist in the buffer array.

Fortran supports processing such character arrays through the use of
the write statement. If an error occurs, the err option on the write
statement is exercised and control passes to series of statements that will
display an error message. C’s sprintf function writes numeric and/or
character data into character strings from a list of individual variables. The
number of bytes correctly written is returned by the sprintf function into the
variable bytes. If nine bytes are not written, an error message is
produced. Finally, both programs report the number of buffers processed.

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Next Chapter
":chap06:MAIN}

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Go to Chapter 5 Introduction
":chap05:MAIN}

Chapter 6: Arrays

Arrays are integral to scientific computing. Referred to as vectors,
tables, or matrices, arrays allows large amounts of information to be
structured in a way meaningful to the numerical problem at hand. Fortran
allows arrays of multiple dimensions and user-specified ranges for the
index of each dimension, thereby providing a flexible way to create and
manipulate arrays. Data is stored in a Fortran array in column-major
order. Likewise, C also allows arrays of multiple dimensions. By default,
however, C does not support user-specified index ranges. Data is stored
in a C array in row-major order. Differences between Fortran and C array
handling are instructive and manageable.

This chapter will concentrate on six issues regarding C arrays: row-
major data storage, ranging array indices, pointers to arrays and arrays of
pointers, run-time array dimensioning, character arrays, and structures.

ARRAY DATA STORAGE
Fortran permits arrays to have up to seven dimensions and stores

array data in column-major order. Column-major order requires that array
elements in the last declared dimension are stored in adjacent memory
locations in ascending index order followed by elements in the next-to-last
declared dimension, etc. That is, if the following 3-by-3 table

1 4 7
2 5 8
3 6 9

was stored in a Fortran array called m, then values for m(1,1),
m(2,1), and m(3,1) would be followed by values for m(1,2),
m(2,2), and m(3,2), which would in turn be followed by values for
m(1,3), m(2,3), and m(3,3). Examination of these nine adjacent
memory locations would show the following:

1 2 3 4 5 6 7 8 9

C permits arrays to have up to twelve dimensions and stores array
data in row-major order. Row-major order requires that array elements in
the first declared dimension are stored in adjacent memory locations in
ascending index order followed by elements in the next declared

dimension, etc. That is, if preceding table was stored in a C array called
m, then values for m(1,1), m(1,2), and m(1,3) would be followed by values
for m(2,1), m(2,2), and m(2,3), which would in turn be followed by values
for m(3,1), m(3,2), and m(3,3). Examination of these nine adjacent
memory locations would show the following:

1 4 7 2 5 8 3 6 9

Column- and row-major storage techniques can be further
demonstrated in Figure 6-1† and Figure 6-2.† In the Fortran program,
seven arrays are declared with one, two, three, four, five, six, and seven
dimensions, respectively, where each dimension contains two elements.
Initialized in a single nested do loop, each array element is assigned a
number equal to its storage location by varying the first index most quickly.
The Fortran subroutine display takes as arguments the number of
elements per dimension, the number of dimensions, the name of the array,
and the total number of elements in the array. Dimensioning the dummy
name for the array as a one-dimensional vector of length size allows the
array to be written in the order in which it is stored.

In the C program, the same seven arrays are declared with the same
number of dimensions and number of elements per dimension. Initialized
in a series of nested for loops, each array element is assigned a number
equal to its storage location by varying the last index most quickly. The C
function display takes as arguments the number of elements per
dimension, the number of dimensions, the address of the first element in
the array, and the total number of elements in the array. Declaring the
name for the array as a pointer to an int data type allows the array to be
accessed in storage order when written. If these seven arrays had been
initialized in the C program in the same manner as the Fortran program
then they would be displayed as in Figure 6-3.† Such a display clearly
shows the difference between Fortran’s column-major and C’s row-major
array storage priority. Given the major difference between Fortran and C
array storage techniques, array index manipulation needs to be carefully
examined when re-casting a Fortran program into the C programming
language.

ARRAY INDEX RANGE
By default, each dimension of a Fortran array is indexed by a number

ranging from one to the number of elements in that dimension of the array.
User-specified index ranges are supported by Fortran so that negative,

zero, or positive integer valued indices are valid for any given dimension of
an array. Figure 6-4† declares four arrays: minus with wholly negative
indices; split with negative, zero, and positive indices; normal with
default indices; and plus with wholly positive indices offset from unity.
The single do loop initializes each successive element for all four arrays
to the same value by calculating the array index as an offset from the value
of i, the loop control variable. After the value of the first and last element
and index range of all four arrays is displayed, the contents of the arrays
split and normal are written.

Coded in C, Figure 6-5† shows the same kind of program. All four
arrays are declared with seven elements per row, and an array index offset
value is initialized for each array (i.e., m for the array minus, s for the array
split, etc.). Initializing each array is accomplished in the first for loop
where the array index is calculated as an offset from the value of i, the loop
control variable. As in the Fortran version, the value of the first and last
element and array index of those values for all four arrays is displayed. In
each case, the first and last array index values are zero and six,
respectively, because each dimension of a C array is indexed from zero to
one less than the number of elements in that dimension.

As an alternative to an array index syntax with an explicit offset
variable, a pointer to what would be the zero element in the range for an
array index can be declared and the array referenced through that pointer.
For example, *SPLIT is a pointer to the int array called split and is initialized
to the address of the fourth element of the split array. Consequently, valid
array indices are 0 through 6 for split and -3 through 3 for SPLIT as shown
in the for loop in which SPLIT is displayed. Fortran’s default initial index of
one versus C’s default initial index of zero can be consolidated by
initializing the pointer *NORMAL so that NORMAL[1] through NORMAL[7]
are synonyms for normal[0] through normal[6]. Note two different ways of
creating the SPLIT and NORMAL offset arrays: the methods used could
have been reversed so that the two lines of code might read

 SPLIT = split + 3
 NORMAL = &normal[0] - 1

because the name of an array is totally conformant to the address of the
first element of that array. It is significant to fully appreciate that SPLIT
and NORMAL are not duplicates of the split and normal arrays,
respectively. They do add a slight amount of storage (i.e., usually two

bytes ... an exact measurement can be computed as sizeof(int *)) but that
additional storage is independent of the size of the array. In Fortran terms,
SPLIT and NORMAL are have been “equivalence-d” to the split and
normal arrays.

POINTERS AND ARRAYS
Pointers to arrays are common in C language programs. As

described in the previous paragraph, the name of an array is an equivalent
syntax for the first element of that array. In Figure 6-6,† several arrays are
alternatively referenced directly by or through a pointer. A 3-by-3 matrix
named square is declared, initialized, and displayed row by row. Pointing
to the address of the first element of square, successive elements of that
array can be referenced through the pointer SQUARE as SQUARE+0,
SQUARE+1, ..., SQUARE+8 as shown in the second for loop.
Alternatively, each row of the square array can be referenced through a
pointer to the address of the initial element in each row. Whereas
SQUARE was a single pointer to the beginning of the whole square array,
Square is a three-element array of pointers where each element of Square
points to the beginning of the respective row in the square matrix.

A major advantage of pointer arrays is that each additional dimension
need not be the same size. For example, the 3-by-3 triangular matrix even
has six values on and below the diagonal and zero above and requires
twelve bytes of storage. A perfectly equivalent arrangement is the array of
pointers called uneven in which successive rows have one, two, and three
elements. As such, the storage required for uneven is six bytes for the
three pointers in uneven and six bytes for the values in unrow0, unrow1,
and unrow2. In this specific case, the total storage requirement is identical
but the slight storage required to create an array of pointers such as
uneven could easily be amortized over longer individual rows to realize a
net storage reduction using pointer arrays.

DYNAMIC ARRAY DIMENSIONS
C allows run-time array dimensioning. Fortran always requires the

dimensions of an array to be totally fixed somewhere in a program, and this
cannot be changed without re-compilation. Of course, smaller arrays can
be processed by such a program but storage for the full array is always set
aside at each program invocation. Figure 6-7† is a C program in which the
dimensions of a table called adjust are specified by the user on the
command line that begins program execution.

If the program was invoked with this command line

fig67.run 3 9
then the array adjust would be defined to have 27 elements arranged into
three rows and nine columns. These three strings are passed to the
program as argv[0], argv[1], and argv[2]. It is common for the program
name string, argv[0], to be used in the text of an error message describing
program usage. Row and column strings are converted from characters to
integers with the C standard strtol function. Memory is allocated for this
array in two stages. First, the C standard calloc function is called to
allocate space for pointers to each of the three rows. Second, that same
function is called on a per row basis in the first for loop to allocate space for
nine columns per row.

Memory can be allocated in three ways in C: the calloc function, to
reserve space for a particular number of elements of a certain data type;
the malloc function, to reserve space for a block of memory a specified
number of bytes in length; and realloc function to reallocate memory
reserved by calloc or malloc. The example program works with a two-
dimensional adjustable array but if three dimensions were needed (i.e.,
cube[x][y][z]) the following code would be used:

 int ***cube, b, x, y, z, i, j;
 b = (size_t) sizeof (int);
 cube = (int ***) calloc ((size_t) x,b);
 for (i=0; i<x; i++) {
 cube[i] = (int **) calloc ((size_t) y,b);
 for (j=0; j<y; j++) {
 cube[i][j] = (int *) calloc ((size_t) z,b);
 }
 }

and for one dimensions (i.e., vector[x]) this code would be used:

 int *vector, b, x;
 b = (size_t) sizeof (int);
 vector = (int *) calloc ((size_t) x,b);

In either case, arrays of other data types (i.e., float, double, etc.)
could be defined by changing int to the desired type in the declaration of
the array, the assignment of b, and the cast preceding the invocation of

calloc. Also, these code fragments could be changed to use malloc
instead of calloc by replacing each invocation of calloc with an invocation of
malloc and modifying calloc’s two arguments into a product to calculate the
single argument to malloc (i.e., (size_t) x,b to (size_t) x*b).

The example program then initializes each element of the adjust
array in the second for loop and displays it using the adisplay function.
Then memory reserved for adjust is released in the order in which it was
claimed: storage for columns for each row, followed by storage for rows.
Memory is released by the C standard free function. For comparative
purposes, a fully specified three-by-three array called fixed is created,
initialized, and displayed in the example program.

CHARACTER ARRAYS
Character arrays are the major advantage ANSI 77 standard Fortran

enjoys over Fortran 66. C provides several constructions to store and
manipulate character data. Figure 6-8† demonstrates a number of
methods in C to handle characters.

Individual characters can be stored in variables and arrays of either
int or char data type. Variables cints0d, cints1d, and cints2d hold single
characters as a scalar, a vector, and a table, respectively, of int data type
and are exactly matched by the char data type variables chars0d, chars1d,
and chars2d. In the statements where cints2d and chars2d are initialized,
a set of curly brackets (i.e., {}) delimit each row in the table: this is not
required but is included to show how to explicitly denote the initialization of
an individual array dimension.

Arrays fixed and adjust each hold the same character strings, but
storage requirements for these two representations differ: fixed takes 18
bytes and adjust takes 16 bytes. Array fixed is stored in a two by nine
table with one byte per entry as

Row Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8

0 n l \0
1 o p q r s t u v \0

which requires 18 bytes of storage. Array adjust takes two bytes for each
string pointer (i.e., *adjust[0] and *adjust[1]) for a subtotal of four bytes, plus
three bytes for the string “NL\0”, plus nine bytes for the string “OPQRSTUV\

0”, for a grand total of 16 bytes of storage. Data storage is conserved
using an array of pointers to strings rather than a fixed table declaration.

Character strings can be stored individually or in arrays. A single
string of words are stored and accessed through the pointer *string0d. An
open-ended list of strings are stored and accessed through an array of
pointers in *string1d. The number of strings in the list is calculated by
dividing the number of bytes set aside for the pointer array string1d by the
number of bytes required to define a pointer to the char data type. A table
of strings are stored and accessed through a two-dimensional array of
pointers named string2d. This table is declared with three columns and
initialized with four rows.

Column 0 Column 1 Column 2

A table of strings
with a variable
number of rows
\n and a fixed number (3) of columns per row.

The number of rows are computed using the sizeof function and the
known number of columns per row. Finally, the seven initialized elements
of the string table are displayed.

STRUCTURES
C also allows arrays that are comprised of different data types. A

struct in C is a data structure defined to hold several components, each of
which may be of any data type including another structure. Furthermore,
arrays can be created for which each element is a struct data structure.

Figure 6-9† is an example of a telephone list application. An array
called person is defined to hold two elements of a struct type called whole.
In turn, whole is established as a data structure containing a telephone
number, an array of characters to hold the full name of the entry, and a data
structure called nameparts of a struct type called part. Furthermore, struct
type part is created with five character arrays each representing a portion
of a name. Each part of a name is read from the users keyboard, a
punctuation mark and/or space is added to the users entry, and that part of
the name is concatenated to produce a combined name in the array
fullname.

Note that all five parts of the entered name as well as the combined
name are carried in each element of the person array. Then a telephone
number is read from the keyboard and placed into the appropriate slot in
the data structure contained in the person array. When each element of
the person array is displayed, the full name is retrieved directly from the
person array but the telephone number is accessed through a pointer to the
current row in the person array. This is not required, but it demonstrates
the syntax of referring to a piece of a structure declared as a pointer.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 7: Interprogram Communication

Finished programs are the end result of many cooperating
components. Under immediate control of the programmer are those
components of source code and the way that code interacts with host
operating system. Hardly any Fortran language feature directly supports
source code maintenance and modularity, whereas C has several.
Furthermore, Fortran does not define a way to interact with the operating
system beyond file access and the exit and pause statements, but C
does.

This chapter will concentrate on C support services loosely
categorized under a heading of interprogram communication. Five specific
areas to be covered are: source code markers, included files, command
execution, signal handling, and program completion control.

SOURCE CODE MARKERS
Source code markers are C macros that brand the binary file output

by the compiler with information about the source code file. The C macro
names and the information they convey to the binary are as follows:

__DATE__ date on which source code was compiled.
__FILE__ name of source code file.
__LINE__ line number in source code file.
__TIME__ time at which source code file was compiled.

Embedding attributes of the source code file into the binary allows the
executable program to post very informative error messages. These
macros are used in an example program shown in Figure 7-1.† Of
particular interest is the __LINE__ macro as it is a running count of the
number of newlines (plus one) from the beginning of the source code file.
In other words, it counts blank lines, lines of source code, comments,
compiler directives, etc., but does not count lines included into the current
source code file (see next paragraph). Line counts reported by __LINE__
can be set or re-set to an arbitrary datum at any point through the use of
the #line compiler preprocessing directive. The example program uses
that directive to associate a line count of 1000 with the 10th line in the file,
1001 with the 11th, etc. These source code markers give the programmer
a rudimentary means to have an executing program refer to characteristics
of the underlying source code.

INCLUDED FILES
Included files contain repeated source code, data structure

definitions, or function prototypes. They are brought into a source code
file at a particular point by the #include compiler preprocessing directive.
Figure 7-2† shows a trivial use of an included file. A single printf statement
comprises the entire inc.one file, which in turn is inserted twice into the
major source code file at the first #include in the main program and the
second #include in the func function. Figure 7-2† introduces a convention
used in this chapter to show where a new file begins in source code
listings: the string ‘/* inc.one */’ is not used as a C comment but as a
convention to indicate that a new file begins at that point. Files can be
nested using the #include mechanism up to eight levels deep, as shown in
Figure 7-3.†

The #include statement uses two different methods to signal the
name of the file to be included. Angle brackets (i.e., < and >) are used to
reference files that the C compiler will retrieve from a specific location in a
host’s file system. The exact location changes from host to host. C
standard files that define C standard macros, manifest constants, and
function prototypes are retrieved automatically from this specific location.
Double quotation marks (i.e., ") are used to delimit files written by the
programmer and, unless otherwise qualified with a path name, usually will
be retrieved from the same location in a host’s file system as the source
code file.

Real uses of included files come in the software development
process when a single program is constructed of many functions and data
definitions. Reworking even a moderate program to use included files
improves its readability and modularity. Figures 7-4† and 7-5† are the
same program using the same code but with a different arrangement of
source code files.

Both programs manipulate two sets of three variables: an integer, a
floating point number, and a character string. One set of three variables is
global to the entire program, and the other set is local to each individual
function. Both sets of three variables are initialized in the main program,
displayed to the user, passed to a function for modification, displayed to the
user, returned to the main program, displayed to the user, modified in the
main program, and displayed to the user one final time. Included files in
Figure 7-5† group variable definitions for global and local variables and
function prototype statements. Then, source code for each function –

gdisplay, gmodify, ldisplay, lmodify, and udisplay – can be stored in
individual source code files, compiled separately, yet refer to a single copy
of common code stored in the included files.

COMMAND EXECUTION
Command execution allows an executing program to invoke an

operating system command, have it run, and return control to the original
program. A simple example is shown in Figure 7-6,† which uses C’s
system function to execute three commands. Initially, C’s system function
is used with a NULL argument to determine if a command processor exists.
If a command processor exists, the example program passes three
commands to the host operating system in turn. The syntax of such
commands and the value returned by the system function are not defined
by C but vary from host to host.

SIGNAL HANDLING
Signal handling enables an executing program to manage external

interrupts and certain internal conditions. The C standard signal function
can establish a trap for, at a minimum, these six specific conditions

SIGABRT abnormal termination (i.e., the C standard abort function)
SIGFPE erroneous arithmetic operation (i.e., zero divide, overflow, etc.)
SIGILL illegal instruction
SIGINT interrupt (i.e., some keyboard entry defined by the host system

to get the attention of the executing program: often a control-C)
SIGSEGV invalid access to storage
SIGTERM program termination (i.e., some signal defined by the host

system to force program completion)

Other conditions might be defined on any given host, but these six
will exist for each standard-conforming C compiler. C’s signal function can
either register the name of the function that will execute when a signal is
received or indicate that a signal should be ignored. Figure 7-7† sets a
trap for the interrupt signal, springs the trap, handles the signal, and
disables the trap. The first call to signal registers the user-written function
bother as a handler for the interrupt signal. C’s raise function causes the
interrupt signal to be sent. When received by the program, the function
bother is invoked and displays a message to the screen. Finally, the user-
written interrupt handler is disabled and the host’s default interrupt handler
is restored by invoking the signal function with the single argument set to

the value of the SIG_DFL macro.
Keyboard entry of the interrupt signal can be trapped or ignored.

Figure 7-8† demonstrates how a handler for the control-C interrupt signal
can be written to manage keyboard entry. When executed the first time, a
control-C was entered at the prompt causing the user-written function
controlc to be invoked. When executed the second time, the letter X was
entered at the prompt and the interrupt signal was not raised. Figure 7-9†
shows the same program, but the second invocation of C’s signal function
causes the interrupt signal to be ignored. Consequently, the program
behaved in the same way the first time the program was run (when a
control-C was entered at the prompt) and the second time (when the letter
X was entered).

PROGRAM COMPLETION CONTROL
Often the completion of a program needs some special handling: file

management, transaction log updates, final user instructions, etc. C’s
standard atexit function is a mechanism to register a series of up to 32
different functions that will be invoked in turn at program completion. Two
functions will execute at the end of the program in Figure 7-10.† C’s
standard atexit function registers the user-written function accounting and
then the user-written function finished. When the exit function is invoked,
the two user-written functions will run. Note that they will run in reverse of
the order in which they were registered with the atexit function. That is, if
user-written functions FF, EE, DD, ..., C, B, and A were registered in that
order with 32 separate invocations of the atexit function, then they would
executed in the order A, B, C, ..., DD, EE, and FF.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 8: Input / Output

Input and output to files and CRTs comprises the bulk of work of the
vast majority of programs. Aspects of I/O covered in this chapter include
Fortran “internal files” (i.e., writing/reading to/from a buffer), keyboard and
display processing, sequential and direct access method files, and Fortran
format statements.

INTERNAL FILES
Long before the ANSI 77 standard provided a definition for internal

files, Fortran programmers used “encode” and “decode” to exchange data
between character and numeric representations. Internal file input and
output is no different than any other Fortran read and write operation.
Most file operations can be performed on these internal files. However, it
is typical to see them employed where a single record in an internal file is
written and read over and over again converting numeric data to character
form or reversing that process.

C has two functions – sscanf and sprintf – that perform conversion to
and from character buffers. As an example, Figure 8-1† exercises both
functions on a variety of data types. Four variables representing four
major data types are read from the terminal using C’s scanf function.
Packing these four variables – an integer, a floating point number, a
character string, and an array of characters – into a single character string
is accomplished by the sprintf function. In effect, sprintf “writes” the values
of these individual values into a single character string and appends the
null character onto the end. Individual variables are reset to arbitrary
values before being “read” back from the single character string by C’s
sscanf function. Throughout the course of the program, values for
selected variables are displayed to chart progress of the program’s
execution.

FILES
Files represent a fundamental means of interprogram communication.

Standard operating procedures call for data written by one program to be
available, given security clearance, for reading by one or more programs.
Fortran supports formatted or unformatted sequential and
direct access method files. Virtually every Fortran compiler
implementation also allows data to be read from a user’s keyboard and

written to user’s video display. Furthermore, it is common to have a single
program access multiple files and the user’s terminal to acquire, display,
retrieve, and store data. C provides support comparable to Fortran for a
variety of devices under several formats.

Fortran does not make a great distinction between access to
formatted sequential files and terminal data handling. Usually, two distinct
unit numbers are preassigned by the host operating system for keyboard
and monitor input and output (i.e., often units 5 and 6, respectively). Most
file input/output operations are valid for a CRT (except Fortran’s
backspace, endfile, and rewind statement which are not
meaningful for terminal input/output). C restricts certain functions to the
CRT but others are defined independent of the intended device. The
biggest difference between terminal handling by Fortran and by C revolves
around recognition of the carriage return and line feed combination that
signals a new line. On output, ANSI 77 standard Fortran always generates
a new line at the end of a print or write statement. Fortran has no
standard-compliant way to display a prompt and then, without advancing to
a new line, wait for the user to respond. C can accomplish this
prompt/response cycle with ease because the programmer is totally in
control of when and if a new line is generated. C forces the programmer
to explicitly recognize and manage the presence of the new line indicator in
order to acquire the amount of data expected per line of input.

This section will demonstrate methods of C input/output for terminals
and files. CRT input/output is shown in eight examples: per character,
strings, whole numbers, floating point numbers, strings (again), individual
words in a string, character type recognition (i.e., alphanumeric, upper or
lower case, punctuation marks, etc.), and character-to-numeric conversion.
C sequential file input/output functions are presented followed by an
exercise of C’s methods to perform direct file access.

Terminal Input/Output
Individual characters can be accepted and displayed by C’s getchar

and putchar functions (see Figure 8-2†). Single characters are accepted
from the keyboard by C’s getchar function. Each character is stored in a
variable of int data type. A char data type might be a logical choice, but
the numeric range of character variables (i.e., at best 0 to 255 for unsigned
char ... see Table 3-2†) is too small to allow arbitrary definitions for “special”
values such as the end-of-file constant EOF. Once a single character is
accepted, it is tested to make sure that it does not signal the end of data.

The getchar function returns this indicator of end of “file” if an error
occurred or the user entered the implementation defined key sequence that
indicated end of data (i.e., often either the two key sequence control-D or
control-Z). Until that value is returned by getchar, the putchar function
continues to copy everything entered on the keyboard to the screen.

Character strings can be read and written to a CRT using terminal-
specific C functions or device independent functions. Functions gets and
puts perform input and output for strings oriented to the terminal and fgets
and fputs can handle both terminals and files as shown in the example
program in Figure 8-3.† A string is read from the keyboard by gets until
the user presses the return (or enter) key or enters the key sequence that
signals an end-of-file. In effect, gets will read one line at a time from the
keyboard. After a line is read, C’s puts function writes the string to the
CRT screen. Comparable to gets and puts, fgets and fputs can manage
terminal input and output as well as files.

Whole numbers are processed by scanf, a general purpose formatted
CRT input function. As coded in the example program in Figure 8-4,†
scanf reads a single integer value into a variable through the address of
that variable (i.e., &number). If successful, the number of bytes read will
be recorded in the variable bytes through the %n format, and the number of
fields processed will be captured by the variable error. Under error
conditions, scanf will set error equal to the number of conversions it could
accomplish before the error occurred and equal to a value signifying EOF if
no conversions were possible. Note that scanf will do as much of the
conversion as possible before giving up: in the example program, scanf
accepted the 4 in the entry of 4.99 and converted it to an integer before
stopping at the decimal point.

C’s scanf function will read up to but not through the carriage return /
line feed sequence marking the end of a line. Consequently, this new line
mark must be disposed of between each call to scanf: the example
program accomplishes this with the following code

 newline = getchar();

Formatted output to the terminal is done by C’s printf function. As
coded in the example program, it counts the number of bytes written and
simultaneously updates the error variable and the variable bytes through
the %n format. Should a mistake occur, printf sets the error variable to a
negative number.

Floating point numbers are also processed by scanf (see Figure 8-
5†). The conventions of scanf and printf are the same for this program as
the previous example program in respect to error control, input character
counts, and new line processing. Note here that a whole number – 123 in
the example – can be read under an %f format and will be correctly
converted to 123.0.

Character strings can be processed by scanf (see Figure 8-6†). The
conventions of scanf and printf are the same for this program as the
previous example program in respect to error control, input character
counts, and new line processing.

Whole sentences can be processed by a combination of C’s gets and
strtok functions. The example program (Figure 8-7†) uses C’s gets
function to read line of characters from the keyboard and C’s printf function
to echo those characters back to the CRT display.

The line

 piece = strtok (buffer, " ");

updates the variable piece with the address of the first word in the
collection of characters called buffer. The second argument to C’s strtok
function defines a set of characters to use as word separators. In this
example, the blank was designated as the marker between tokens in the
long character string. Depending on the context of the data a program
might process, other choices for token separators suggest themselves:
the hyphen for telephone numbers, the comma for monetary figures, and
the dash for command line options. The next portion of the program sets
up a loop that will continue to execute until the last token has been
extracted from the character string. At that point, the address return by C’s
strtok function will be NULL. The line

 sentence[words-1].word = piece;

stores the address of the most recently extracted token into the next
element of a data structure called sentence. Note that the variable words
keeps a running count of the number of tokens in the character string.
Finally, the example program displays each individual word in the string.

Not only can individual words be processed, but individual characters
can be classified by an entire family of C functions. Once a character has
been read from the keyboard by C’s getchar, it can be classified as

alphanumeric, printable, upper- or lower-case, etc., by one of C’s is
functions. An example program (Figure 8-8†) reads a single line of
characters from the keyboard and classifies each character using a C is
function. Note that some characters are correctly classified as belonging
to several groups: the letter d is a simultaneously a letter, a hexadecimal
digit, and an alphanumeric, printable, lower-case character.

A final example of terminal input and output is accepting numeric
data. An example program (Figure 8-9†) accepts a string from the
keyboard and converts it in stages from a double precision floating point
number through a single precision floating point number through an
extended range integer to a standard whole number. Initially, a character
string of up to ten bytes is acquired from the keyboard by C’s gets function.
It is converted to a double precision number by C’s strtod function. Should
this conversion fail, strtod returns zero. This double precision value is then
checked to see if it falls within the range that can be represented as a
single precision floating point number; the reference used is the smallest
and largest values accepted as a single precision floating point number
(i.e., the macros FLT_MIN and FLT_MAX, respectively, as defined in the
float.h file). The single precision floating point value is converted to an
extended precision integer if it falls within the numerical limits of a long data
type (i.e., the macros LONG_MIN and LONG_MAX as defined in the
limits.h file). Next, the extended precision integer is reduced to a normal
integer if it fits by comparison to the limits of an int data type (i.e., the
macros INT_MIN and INT_MAX as defined in the limits.h file). Finally, all
four numeric representations of the number are displayed on the terminal
screen by C’s printf function. Six test values are processed by the
example program to demonstrate handling of negative numbers, positive
whole numbers, floating point numbers, and numbers that successively
exceed the limits of the int and long data types.

C offers a rich collection of functions to support terminal input and
output. Without question, the greatest benefit C offers over Fortran is its
ability to allow the programmer to control if and when a carriage return /
new line sequence is processed. Initially, however, C’s disadvantage
comes by providing several CRT accept and display functions of varying
capabilities which must be selected with care, rather than Fortran’s binary
choice of read and write.
Sequential Access Method Files

Sequential access files have a simple implementation in most

computer languages, and C is one of them. In the example program
shown in Figure 8-10,† a “card image” data file is read until the end of file.
Initially, the program opens the data file in a mode – “r” – that signifies that
the file is a text (i.e., formatted) file that must exist prior to program
execution. Then up to MAX_LINES are read from that file using C’s fgets
function. Note that this function will return NULL under two conditions:
the end of file has been reached or a read error has occurred. C’s feof
function is used to distinguish between those two conditions. If the file has
been read to the end, the break statement stops further processing of the
for loop. If the file has not been read to the end, a read error message is
displayed and execution of the entire program is terminated. Each line as
read with fgets from the file is then displayed on the terminal screen with
C’s fputs function. When the for loop has stopped, C’s feof function is
used again to check for the end of file condition. If there is more data in
the file, the user is warned that the file was not read to conclusion with a
message:

ERROR! Premature EOF at line 10!
Otherwise, the count records read is displayed like the following:

A total of 37 records were read.
Finally, the file is closed with C’s fclose function. Sections on

Fortran’s read† and write† statements in Chapter 5 give other examples
of sequential file input and output.

Direct Access Method Files
Direct access files are Fortran’s only native file structure. Access to

data is controlled exclusively by the record number in such files with only
three significant rules: a record must be written before being read, record
N can not be written until records one through N-1 have been written, and
each record has a fixed logical record length. C’s binary file type managed
by C’s fwrite and fread functions operating on fixed-length data structures
provide an exact duplicate of Fortran’s direct access files. By example,
Figure 8-11† shows a program that gathers information from the CRT,
populates a three record direct access file, displays that file sequentially,
and then displays any given record from the file.

At the beginning of the example program, the file is opened in a mode
– “wb+” – signifying that the file is a new binary file that can be written to

and read from at any record, as opposed to only at the end of the file. C’s
sizeof function computes the length, in bytes, of the data structure that will
be used to set-up data for input and output. The setvbuf function then
establishes that record length as operative for that file. Then, three lines
are read from the terminal with C’s fgets function. Since this function
reads the carriage return / line feed generated by the user when the enter
(or return) key is struck, it is explicitly over-written with the null character.
The other element of the record data structure is initialized to be the record
number in the file. This is not required: any numeric data could have
been placed in this field or any other field definition could have been
substituted in its place. Data being ready for output, C’s fwrite function
writes lrecl bytes to the file from the area pointed to by the address
&record. Once rewound, the file is then read sequentially by C’s fread
function and displayed to the user.

Concluding this program is a section where the user specifies the
order in which to read records. When prompted, the user enters a record
number which, after checking for validity, is used to compute the file
position. The line of code that reads

 position = (line - 1) * lrecl;

calculates the position in the file of the beginning of record number line as
measured in bytes from the file’s beginning. That is, with a 64 byte logical
record length, the first record begins at byte 0 and extends through byte 63,
the second record stretches from byte 64 to byte 127, and the third record
occupies bytes 128 to 191. C’s fseek function places the file pointer at
that byte offset from the beginning of the file in preparation for the next
read. Once acquired randomly from the file, the record is displayed on the
users screen. Finally, the file is closed. Sections on Fortran’s read†
and write† statements in Chapter 5 give other examples of direct access
file input and output.

One difference between Fortran and C direct access files needs to be
highlighted. C terminates each character string with the null character
(i.e., the ‘\0’ character). So, a “ten character” string actually contains nine
characters and the null character. In Fortran, a ten character string
contains ten characters. This causes a mismatch in binary direct access
files. As mentioned in the read† and write† sections in Chapter 5,
Fortran needs to read and discard a character*1 variable at the end of
each C character string and write a character*1 variable initialized to

char(0) at the end of each character string. Note that this “extra”
character on input and output will affect the logical record length of such
files.

Both Fortran and C provide comparable means of terminal and file
input and output. C certainly offers a wider variety of functions from which
to choose than Fortran’s read, print, and write and this translates
into more control being placed in the hands of the programmer. For
compatibility purposes, it is significant to note that both languages support
the same range of file types and that neither language has a file type than
can not be processed by the other. Lastly, it should not be overlooked that
C provides superior error control information on a per-read and write basis
than available under Fortran: counts of fields and bytes correctly
processed up to the point of an error can be used to develop quite specific
error messages.

FORMATS
A significant percentage of source code for most programs deal solely

with acquiring data and preparing such data for output. Interactive front
ends for programs that began life in a batch mode and generic “report
writers” are excellent examples of programs where nearly all processing is
directed towards packaging data for input or output. Both Fortran and C
provide means to edit incoming data and convert internal data
representations into printable or displayable form. Fortran uses nearly
thirty different edit descriptors in a format statement to massage data
(see Table 8-1†). C uses a dozen conversion specifiers with eight flags
and modifiers qualifying those specifiers to accept and display formatted
data (see Table 8-2†).

Combinations of each valid flag with C’s conversion specifiers is
shown in Figure 8-12.† In the absence of a flag, C displays any given
datum in as compact a field as possible. Once qualified by a flag, C can
display information left-justified, with or without sign, with or without leading
zeros, and with some field-sensitive editing for numeric data.

Some flag / conversion specifiers are not legal (i.e., leading zeros for
character data). Most of the conversion specifiers include a field definition
in the form of “width.precision”, where the width number measures the span
of the field on the output device and the precision number generally defines
the number of digits to appear to the right of a decimal point. On output,
width and/or precision can be replaced by an asterisk which will be

evaluated when the program executes such as

 width = 10;
 precision = 5;
 value = 123.0;
 printf ("%*.*f\n", width, precision, value);

would produce the following display (n.b., the “_” denotes a blank)

_123.00000
Deferring a full field specification until program execution is “run time

formatting”, an example of which appeared in the format† statement
section in Chapter 5. On input, an asterisk indicates that a field should be
skipped. For example, the following line of code

 scanf ("%i %*i %i", &first, &last);

when reading the following record

123 456 789
would assign 123 to first and 789 to last because the %*i specifier causes
the 456 field to be discarded.

For the most part, C is capable of creating an output string similar in
appearance to its Fortran counterpart. However, the G floating point
format is an exception. ANSI 77 standard Fortran defines the appearance
of a number printed in a G format as a function of its value and the
precision under which it is printed (see Figure 8-13†). C’s G specifier has
a similar rule: generally use the f specifier unless the exponent is less
than -4 or exceeds the precision in which case use the e specifier. Figure
8-14† shows how C’s G specifier handles the same range of values
processed by a Fortran program.

Form control is provided by Fortran and C through special strings.
Fortran’s form control consists primarily of managing a line feed at the
beginning of an output record (Figure 8-15†). C can produce the identical
display with special format characters such as \f for form feed, \r for a
carriage return without a line feed, and \n for a new line (Figure 8-16†).

Fortran format statements can be emulated in C. When a format
statement is needed to display the same information without variation then
C’s #define statement is the best mechanism. When the information

varies from time to time, then a complete formal function subprogram can
be written or C’s #define can be used to establish a statement function.
Figure 8-17† shows how both kinds of format statements can be
programmed in C. In the example program, the first #define statement
instructs the compiler to replace the string format1 with that printf statement
throughout the file. The second #define statement creates a statement
function called format2 that accepts five arguments and feeds those
arguments to a printf output statement. Note that the fourth argument,
narg, is the number of characters to print from the character array b and is
used to complete the specifier %.*s by “filling” in the asterisk. Also, the
first two lines in this function end with the backslash character. This
character tells the compiler that the logical line is “continued” on the next
physical line of source code. The third #define statement establishes a
statement function called format3 that takes four arguments and sends
those arguments to a scanf input statement. The fourth and final #define
statement creates another statement function that accepts text strings and
the value of an int variable as arguments.

Managing input and output is major portion of the effort of any
programmer working on a large suite of programs. Above and beyond file
design, data storage methodology, and terminal interface schemes, basic
data I/O consumes a large proportion of programming time. Differences
exist between Fortran and C input/output mechanisms; but both can
perform nearly all of the other’s operations, and files created under one
language can be processed by programs written in the other.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 9: C Functions New to Fortran

C has a number of functions that are foreign to the Fortran
programmer. Some of these new functions have been introduced in
previous chapters but six areas have yet to be discussed. This chapter
will present C functions covering compiler preprocessing, enumerated
constants, sorting and searching, random numbers, time and date
handling, and recursive functions.

COMPILER PREPROCESSING
C source code lines beginning with the # symbol are interpreted at

compile time as compiler directives. Many of the example programs in this
book have used the #define directive; the #include directive was covered
in Chapter 7,† and Figure 9-1† introduces eight new compiler directives.

After three constants are defined, the program tests the value of a
decision variable COMPUTER in a very Fortran-like “#if ... #elif ... #else ...
#endif” sequence to initialize a data structure called host with an
identification of the host computer, C compiler, and C compiler version
number. Then, a long version of the #ifdef directive is used to determine if
KNOWN is defined and to print a message stating whether or not it is. The
#undef directive is then used to “un-define” KNOWN and its state is tested
with the #ifndef directive to confirm whether not it is indeed undefined.

The last directive, #error will display a message at compile time if the
conditions under test cause it to be executed. The appropriate lines of the
program are commented out because MISSING is not defined. If those
lines were left intact, #error would be executed and the user-specified
message would by displayed by the compiler. This directive is particularly
useful to force a compiler error if some special situation arises where the
programmer is sure that the compile should not continue.

Also, an implementation-defined compiler directive named #pragma
has arguments and an interpretation that varies from host to host and from
compiler to compiler. In effect, #pragma is a “place holder” defined in the
ANSI C standard for each compiler developer to insert compiler and/or host
specific preprocessing directives.

ENUMERATED CONSTANTS
Enumerated constants are a special form of the C int data type.

They are used to assign integer values to a set of variables, as shown in

Fig. 9-2.†
In the example program, two sets of enumerated constants are

defined. Each individual constant in the set cardinal_directions is, by
default, assigned a successively higher integer starting at zero. Each
individual constant in the set compass_rose is explicitly assigned an integer
value with the last constant, c, receiving a value one higher than the
previous constant, nw. Although the example uses positive integers in a
monotonic series of values the following assignment for compass_rose

 { ne=10, se=-7, sw=66, nw= 9, c };

is legal and would create a series of values for the five constants of {10,-
7,66,9,10} where both the ne and c constants were assigned an identical
value. It is important to realize that the enum statement establishes values
for constants such that no element of cardinal_directions or compass_rose
can be changed later in the program.

SORTING AND SEARCHING
Sorting is directly supported in ANSI standard C through the qsort

function. In the example program in Figure 9-3,† a list of six words is
defined, initialized, and displayed in the original initialization order. C’s
standard qsort function is invoked with reference to the array to be sorted,
the number of elements in the array, the size of each element in the array,
and the name of a user-written function that will “order” any arbitrary pair of
array elements. The user-written function must return a negative, zero-
valued, or positive number if the first element in the pair is considered less-
than, equal-to, or greater than the second element, respectively. This is a
user-written function so any special ordering rules (i.e., partial key sorts)
and data type handling can be explicitly managed by the programmer.

In the example, the compare function keeps a count of the number of
times it is invoked, uses C’s standard strcmp function to evaluate the lexical
relationship of the two words, and also displays the components and result
of each comparison. Finally, the list is displayed in sorted order. Usually
the qsort function is an implementation of the Hoare’s famous “quicksort”
algorithm defined in 1961. It has two significant characteristics: it is not a
stable sort (i.e., equal valued elements may or may not be in the same
relationship to one another after sorting) and has its worst performance
when all N elements of the array to be sorted are already in order (i.e.,
worst case execution time proportional to N*N).

Searching is directly supported in ANSI standard C through the
bsearch function, of which Figure 9-4† is an example. In the example
program, a table of seven state/region pairs is defined, initialized, and
displayed in the original initialization order. The table of state/region pairs
is then sorted, by state, using C’s standard qsort function (see previous
paragraph). The program then goes down a list of state names entered on
the command line, matches each state name entered by the user to the
state/region table, and displays the region of the country in which the state
is located. C’s standard bsearch function is used to match the user entry,
argv[i], to the table of state/region pairs, states. The bsearch function is
invoked with reference to the target name, the sorted table, the number of
elements in the table, the size of each element in the table, and the name
of a user-written function that will evaluate the match of the target to any
arbitrary table entry. The user-written function must return a negative,
zero-valued, or positive number if the target is considered numerically less
than, equal to, or greater than the table element, respectively. This is a
user-written function, so any special matching rules (i.e., full- or partial key
match) and data type handling can be explicitly managed by the
programmer.

In the example, the bcompare function uses C’s standard strcmp
function to evaluate the match. C’s bsearch function will return NULL if no
match is found; otherwise, it will return a pointer to the matched element.
Having been invoked with six “state” names, the example program then
displays the region of the country in which each state is located, including
one unmatched “state” (i.e., “Wherever”).

RANDOM NUMBERS
A simple random number generator is part of C’s standard library.

Figure 9-5† demonstrates how to initialize a stream of random numbers
with the srand function and produces random numbers until one of those
numbers exceeds half the numerical range of the rand function. The
random number generator is stable in that it will draw the same series
every time if initialized with the same seed.

TIME AND DATE
C supports several time and date functions, demonstrated in Figure

9-6.† Initially, time is retrieved from the system using the time function and
is recorded as the number of seconds since the beginning of January 1,
1970. The amount of processor time used by the program is returned by

the clock function in “ticks per second” which can be converted to seconds
by dividing by the value of the macro CLK_TCK.

The ctime function converts the data returned by time into an string.
Time spans can be measured by using the time function at the beginning of
a code sequence and again at the end and allowing the difftime function to
calculate that difference in seconds. Functions gmtime and localtime
convert the data returned by the time function into “Greenwich Mean Time”
(i.e., UCT or Universal Coordinated Time) and local time, respectively.
Both are displayed through the asctime function, which converts the data
returned by the time function into a string. Note that the only difference
between the ctime and asctime functions is the type of data on which they
operate: ctime works with a pointer established by the time function and
asctime works with a structure initialized on invocation of gmtime and
localtime.

Both ctime and asctime create a string with the identical layout. If
the date and time string created by asctime or ctime are not suitable, other
varieties of date and time formats can be established by the strftime
function. Date and time data are also available on a “broken down basis”
and held in a nine element data structure. Individual elements of this data
structure can be accessed as shown in the tmdisplay function in the
example program.

Of special interest is that this full data structure can be projected
forward and backward in time to determine the date and time of a past or
future moment by manipulating one or more of the elements of this data
structure. In the example program, C’s standard mktime is used to
determine the date and time of a moment four months prior to the
execution of the program. Finally, the example program displays the total
amount of processing time used by the program.

RECURSIVE FUNCTIONS
Recursive functions are fully supported by C. In essence, a function

can call itself in the course of completing its task. Figure 9-7† relies on
this feature to guess a number between zero and 100. Starting with an
initial guess, the program converges on the target value entered on the
command line by halving the difference between the last guess over the
target value and the last guess under the target value. Unless a host
operating system provides special services, Fortran can not support
recursive programs.

{ewc oshtools.dll, OlsonSoftEWButton, " Next Chapter ":next()}

Chapter 10: Summary

This book assumes circumstances exist in which programmers
intimately familiar with Fortran will have opportunities or be required to
program in C. However, there is little merit in entertaining any argument
as to which language is “better”: the decision to program in one language
versus another is a complex function of knowledge of the underlying
problem to be solved, mastery of the language being considered, and time
and/or business constraints. Even within the “Fortran family”, decisions
are still made between Fortran 66 versus Fortran 77 and ANSI standard
Fortran versus proprietary extensions. Weighing the costs and benefits of
the choice of a programming language is a difficult task.

In the near future, Fortran programmers may also change their
programming paradigm to accommodate “Fortran 90.” This specification
grew out of work to develop a new ANSI standard Fortran as an
evolutionary next step beyond Fortran 77 and as Fortran 77’s replacement.
This work began in 1978 and produced a draft standard – ANSI
X3J3/S8.104 – in May, 1987. ANSI committees took under advisement
public comments on this draft standard and elected to change its status
from a replacement for Fortran 77 to a companion specification to Fortran
77. Correspondingly, the 1987 draft was revised – ANSI X3J3/S8.112 –
and published in June, 1989, as a companion rather than a replacement to
Fortran 77. The revised draft received an initial period of public review in
the fall of 1989 with a follow-up review in the fall of 1990. A final was
approved in July, 1991, by the ISO and in September, 1992, by ANSI. As
of late November, 1994, ANSI was seriously examining the issue to end
Fortran 77 as a standard language and support Fortran 90 as the only
ANSI standard Fortran.

Fortran 90 specifies features that are very useful to the design and
development of maintainable code and the programmatic solution of
scientific and technical problems. Ten broad classes of these features are:
source code form, program structure, variable declarations, subprogram
arguments, intrinsic functions, variable initialization, arrays, control
structures, file handling, and a miscellany. Each of these areas will be
described in turn. Several Fortran 90 program fragments are presented in
this chapter.

Source code can take two forms under Fortran 90: free and fixed.
Free form source code specifies lines of up to 132 characters, with

comments beginning anywhere on the line as long as they are preceded by
an exclamation point. Separate Fortran statements can also be “packed”
into one line of source code where each statement is separated by a semi-
colon such as

 i=1;r=2.34;c='letter' ! Three statements on one
line

Lastly, a line in a free form source code file is marked as being
continued on another line by ending the line with an ampersand:

 if (i .eq. 123 .and. &
 j .eq. 456) k = 789
Up to 39 continuation lines are accepted. Fixed form source code is the
familiar Fortran 77 style with two changes: the exclamation point is
accepted along with the letter C and the asterisk as an indication that a
line is a comment; and, as with free form, several statements, separated
by a semi-colon can share one line of code. Fortran 90 also requires that
any given program unit must be coded in either free or fixed (but not both)
forms.

Program structure is revised in Fortran 90 to accommodate a new
means of declaring global data. A simple Fortran 77 program, such as the
following,

 program seven
 integer one, two
 common / area / one, two
 call sub7
 stop
 end
 subroutine sub7
 integer one, two
 common / area / one, two
 one = 123
 return
 end
might be rewritten as

 module area

 integer one, two
 end module area
 program nine
 use area
 call sub9
 end program nine
 subroutine sub9
 use area
 one = 123
 end subroutine sub9
in which the main program and the subroutine are encapsulated in a
“start/end” syntax not much different from Fortran 77’s “if/end if”
pair, global data is defined in a separate program unit called a module
that is referenced in the main program and subprogram by the use
statement. Also, code can be incorporated into a source code file using
the INCLUDE statement (i.e., like C’s #include statement).

Fortran 90 specifies new methods for declaring variables. Adjustable
arrays, and user-selected numerical precision are shown in this example

 real, dimension (3,3) :: three_by_three
 double precision, allocatable, dimension (:) ::
adjust
 integer, parameter :: percent = selected_int_kind
(2)
 integer (percent) score
 integer, parameter :: dp = kind (0.0d0)
 real (dp) bigone
 character (len = 16) first_name
 score = 98_percent
 bigone = 7654321.0_dp
 allocate (adjust(2:5), stat = iaerror)
 deallocate (adjust, stat = iderror)
Array three_by_three is a standard single-precision array. Array
adjust is of data type double precision, but the size of the array is
not specified until later when the allocate statement is executed.
Parameter percent is initialized to signal integers with at least two
significant digits (i.e., between -99 and 99) and is used to declare a variable
score and qualify the constant assigned to that variable. Similarly,

parameter dp is initialized to signal double precision variables and
is used to declare a variable bigone and qualify the constant assigned to
that variable. Finally, a character variable is declared.

Variables used in subprogram arguments also have a new means of
specification in Fortran 90 including keyword calls, generic subroutine
names, and “intent” and optional arguments. For example, if the
arguments to a subroutine are declared in an interface section, then the
names of the dummy arguments can be used as keywords in the call as in

 program option
 interface
 subroutine individual (age, sex, ssn)
 integer, optional :: age
 character (len = 1), optional :: sex
 integer, optional :: ssn
 end subroutine individual
 end interface
 call individual (age=29, sex='F',
ssn=123456789)
 end program option
 subroutine individual (age, sex, ssn)
 integer, optional :: age
 character (len = 1), optional :: sex
 integer, optional :: ssn
 print *, "AGE ", age
 print *, "SEX ", sex
 print *, "SSN ", ssn
 end subroutine individual

This functionality is similar to the keyword concept of Fortran open,
inquire, and close statements, among others. Generic subroutines
can also be defined as

 interface exchange
 subroutine i_exchange (i, j)
 integer, intent (inout) :: i, j
 end subroutine i_exchange
 subroutine r_exchange (x, y)
 real, intent (inout) :: x, y
 end subroutine r_exchange

 end interface
 call exchange (k, l)
 call exchange (a, b)
in which a general purpose subroutine called exchange is defined. It
accepts two variables and allows a type specific user-written subroutine
i_exchange to be called if exchange’s arguments are integer and
r_exchange to be called if exchange’s arguments are real. This
functionality is similar to Fortran 77’s generic versus specific names for
certain intrinsic functions (i.e., log versus alog, dlog, and clog).
The interface definition could also be enclosed within a module
subprogram unit, recognized in other subprogram units through the use
statement, and thereby made globally accessible across the entire
program. In addition, subroutine arguments can be explicitly declared as
input to, output from, input-and/or-output, and optional as

 call subargs (w, x, y)
 call subargs (w, x, y, z)
 subroutine subargs (a, b, c, d)
 real, intent (in) :: a
 real, intent (inout) :: b
 real, intent (out) :: c
 real, optional, intent (in) :: d
 c = a / 2.0
 if (present (d)) b = b * 2.0
Regarding subroutine subargs, the value of the first argument can not be
changed, the value of the second argument might be changed, the value of
the third argument will be changed, and the presence of a fourth argument,
when present, causes a particular expression to be evaluated.

Fortran 90 defines a number of new intrinsic functions to facilitate
some of its novel features. A selection of these intrinsic functions are
listed in Table 10-1.†

Initializing variables in Fortran 90 is very similar to Fortran 77 with two
major additions: number bases other than 10 and data structures.
Variables can be declared to have values in any of four bases (i.e.,
decimal, binary, octal, and hexadecimal) in a data statements as

 integer decimal, binary, octal, hexadecimal
 data decimal / 127 /

 data binary / B'1111111' /
 data octal / O' 177' /
 data hexadecimal / Z' 7f' /
All four variables are initialized to the same value as represented in a
different base.

Data structures are a major feature of Fortran 90 and are analogous
to structures in C. For example, in the following code

 type lumber
 character (len = 4) nominal
 integer length
 character (len = 10) wood
 end type lumber
 type (lumber) :: studs
 type (lumber) :: planks
 data studs / lumber ('2x4', 8, 'White Pine') /
 data planks % nominal / '1x10' /
 data planks % length / 6 /
 data planks % wood / 'Red Oak' /
a derived data type named lumber is defined with three elements and
two data structures – studs and planks – are declared of type
lumber and initialized in two different styles. The flexibility that the
combined derived data types and data structures offer might prove useful in
coding complex technical and commercial models in Fortran 90.

Many features are introduced in Fortran 90 to deal with arrays
including dynamic allocation, sections, augmentation, and whole-array
operations.

During program execution, storage space for an array can be
acquired and released as in

 real, allocatable, dimension (:) :: x
 allocate (x(-5:5), stat = iaerror)
 if (allocated (x)) &
 deallocate (x, stat = iderror)
Here, storage is acquired for an 11-by-10 two-dimension array named x
using the allocate statement, checked for existence with the
allocated intrinsic function, and then released by the deallocate

statement.
Array sections are particular slices of an array. For example,

 integer, dimension (6) :: whole
 integer, dimension (3) :: even
 character (len = 32), dimension (100) :: word
 character (len = 1), dimension (100) ::
begin
 real, dimension (5) :: all
 real, dimension (3) :: extract, some
 even = whole (2 : 6 : 2)
 begin = words (:) (1:1)
 extract = (/ 5, 3, 1 /)
 some = all (extract)
Here, even is comprised of whole(2), whole(4), and whole(6),
begin is up of the first letters of words, and the three elements of some
are equivalent to all(5), all(3), and all(1), in that order.

Operations can be performed on entire arrays in a single statement
such as

 real, dimension (10, 20) :: x
 real average
 average = sum (x) / size (x)
where the intrinsic function sum totals all 200 values in the array x and
the intrinsic function size reports the number of elements – 200 – in the
array x.

Finally, a whole array can be examined, like the following:

 real, dimension (100) :: fever
 character (len = 32), dimension (100) ::
action
 where (fever > 100)
 action = 'Give aspirin and juice.'
 fever = fever - 1.0
 elsewhere
 fever = 98.6
 action = 'No action required.'
 end where

Attributes of arrays also can be queried with some of the new Fortran
90 intrinsic functions (see Table 10-1†).

Fortran 77 and Fortran 90 share similar if and do control
structures but Fortran 90 adds some new features. The if control
structure can be named, as in

 maybe : if (x .gt. 1.23) then
 y = 4.56
 else
 y = 7.89
 end if maybe
which clearly associates an end if statement with its controlling if
statement.

Fortran 90 also supports names and introduces certain branching
statements for do loops, such as

 program doloop
 integer, dimension (5,5) :: a = 0
 integer :: i
 integer :: j
 integer :: k = 0
 right: do i = 1, 5, 1
 c1 if (i .eq. 3) cycle right
 left : do j = 1, 5, 1
 c2 if (j .ge. i) exit left
 k = k + 1
 a(i,j) = k
 end do left
 end do right
 end program doloop
If the program is run as is, it will populate the array as

 1 6 11 16 21
 2 7 12 17 22
 3 8 13 18 23
 4 9 14 19 24
 5 10 15 20 25
which reflects column-major storage. If the first comment, c1, is un-

commented, then the third column remains un-initialized and the array
appears as

 1 6 0 11 16
 2 7 0 12 17
 3 8 0 13 18
 4 9 0 14 19
 5 10 0 15 20
Finally, if the first comment is restored and the second comment, c2, is
un-commented, then only the upper triangle is initialized as

 0 1 2 4 7
 0 0 3 5 8
 0 0 0 6 9
 0 0 0 0 10
 0 0 0 0 0
In effect, the cycle statement drops out of the current iteration of a do
loop and the exit statement breaks out of the entire do loop.

Lastly, Fortran 90 establishes a new control structure named
select such as

 whichever : select case (i)
 case (2, 4, 6, 8)
 call even
 case (1, 3, 5, 7, 9)
 call odd
 case default
 call zero_ten
 end select whichever
in which an action can be taken depending on a set of values specified for
the control variable. In each case, named control structures might
contribute to the clarity and maintainability of Fortran source code.

File handling is changed in Fortran 90 in regard to three areas: new
open statement options, inquire statement syntax, and file input/output
(especially read/write statement options and edit descriptors).

When a file is opened in Fortran 90, four new options can be
specified in the open statement

action a file can be opened for READ, WRITE, or READWRITE
(default) access.

delim on list-directed output, character constants can be delimited by
an APOSTROPHE, QUOTE marks, or without any delimiters
(i.e., NONE which is the default).

pad on formatted input, the record will or will not (i.e., YES – the
default – or NO) be logically padded with blanks if the input list
and format requires more data than the record contains in order
to be satisfied.

position sequential access files can be opened with the file positioned
ASIS (default), at the beginning (REWIND), or at the end of
the file (APPEND).

Also, the status keyword in the open statement has a new legal
value, REPLACE: which will create a file if a file by the user-supplied
name does not exist, or will delete the file by the user-supplied name if it
does exist and then create a new file with the user-supplied name. These
Fortran 90 open statement changes provide additional file control for the
programmer.

The inquire statement is extended to cover the new open
keywords and is also given a new facility. This new facility is
demonstrated by the following line of code

 inquire (iolength = i) array, b, j, string1, x
In this line, i will be set to the “length” of output record if those five
variables were written to an unformatted direct access file. This
“length” variable, i, will be measured in the same processor-dependent
units as are used for the recl keyword option in the open statement.

File input and output is extended by five new read and/or write
statement options and three new edit descriptors. The read/write
statement options are

advance formatted sequential access files under an explicit format
specification can be processed with partial record input/output
(i.e., advance = NO ... default is YES).

eor under no advancing input, if the end-of-record is encountered,

control branches to the label given after this keyword.
nml specifies a name list group name.
nulls under list-direct input, the variable given after this keyword is

set to the number of variables in the input list for which no value
appears in the input stream.

size under no advancing input, the variable given after this keyword
is set to the number of characters transferred under the current
format.

An example of partial record input is

 character (len = 2), dimension (5) :: vowels
 read (7,1,advance='NO',size=n)
(vowels(i),i=1,3)
 1 format (3a2)
! backspace 7
 read (7,2)
(vowels(i),i=4,5)
 2 format (2a2)
in which, if the record read “a e i o u ”, then the first read would
initialize the first three elements of vowels (n.b., n would be equal to six)
and the second read would provide values for vowels(4) and
vowels(5). Note that if the backspace command had not been
commented out, the file position would have returned to the beginning of
the record. Consequently, after the second read, the last two elements of
vowels would be “a ” and “e ” instead of “o ” and “u ”. No
advancing and “namelist” input/output under various names and with
different syntax have been common extensions to Fortran 77: Fortran 90
recognizes the need for such constructs.

Lastly, five new format edit descriptors are defined: B, O, Z, EN,
and ES that allow binary, octal, hexadecimal, and engineering, and
scientific formats. The last two format descriptors, EN and ES, differ as:

Range of Significand 12345 as an Example

EN ± 1 to 1000 12.345E+03
ES ± 1 to 10 1.2345E+04

Consequently, the exponent for the “engineering” notation – EN – will
always be a power of three (i.e., 0, 3, 6, 9, etc.)

Additional capabilities of Fortran 90 include recursive programming,
pointers, and the concept of language evolution. Neither ANSI Fortran 66
or Fortran 77 standards required a standard compliant compiler to support
recursive programming: Fortran 90 has such a requirement for functions
and subroutines. Pointers also have full support in Fortran 90 as a new
data type and can be associated, nullified, and disassociated with a target
object. Finally, Fortran 90 declares as obsolete several features of the
ANSI standard Fortran 77 programming language including the arithmetic
if statement, real and double precision do loop control
variables, shared do loop termination statements, do loop termination
on other than a continue statement, alternate subroutine
returns, the pause statement, the assign statement, the assigned
go to construct, and formal labels specified in read/write statements
by an assign-ed variable. The net effect of these features can be
implemented by better methods available in Fortran 77 and may not be
recognized in whatever Fortran standard eventually supersedes Fortran 90.

Any review of Fortran 90 leads towards a conclusion that the
standard serves to codify some existing practice and introduce new
features. Ten major aspects of Fortran 90 reflect features of C: free form
source code, interface statement (i.e., C’s function prototypes), dynamic
array allocation, data structures, do/whole and select control
structures, file open action (i.e., READ, WRITE, and READWRITE), other
than decimal base format edit descriptors, noadvancing partial record
input/output, recursive programming, and pointers. Given the different
syntax in which these features are implemented in Fortran 90 versus C, it is
clear that Fortran 90 is not modeled after C but rather incorporates modern
programming language requirements as they have evolved since the late
1970s.

This book is addressed to the experienced Fortran programmer: a
programmer who is forever likely to choose Fortran for each and every one
shot programming task that presents itself. Often this programmer has a
thorough applications knowledge of the problem to be solved and is familiar
with the scientific, technical, or commercial discipline from which the
problem arises. This book attempts to preserve this knowledge and
encourage the programmer to apply it effectively when coding in C. If
such a programmer receives a solid, reliable understanding of C by working

with this book, then that objective has been achieved.

{ewc oshtools.dll, OlsonSoftEWButton, " Appendix A ":next()}

Appendix A: C Compilers

In practice, learning C can not be accomplished purely by reading
and study. Using the language in a series of programming projects is the
only sure way of developing expertise. A convenient way to experiment
with C is to have access to a C compiler on a microcomputer. This
appendix is a list of nearly four dozen C compilers currently available in the
market at the time of this writing (December, 1990). The list gives the
product name, the microcomputer(s) on which it will run, and the vendor’s
name, address, and telephone number.

This list of C compilers is provided as a convenience to readers of
this book. The presence of a particular product or vendor does not
constitute an endorsement. Similarly, the absence of a particular product
or vendor does not imply that any evaluation kept it off the list.

C68 (Motorola MC680X0)
Alcyon Corporation
6888 Nancy Ridge Drive
San Diego, CA 92121
(619) 587-1155

MPW C (Macintosh)
Apple Programmers and Developers Association
290 Southwest 43rd St.
Renton, WA 98055
(206) 251-6548

Microcontroller C (Hitachi, Intel, Motorola, Zilog)
Archimedes Software, Inc.
2159 Union Street
San Francisco, CA 94123
(415) 567-4010

Turbo C (PC)
Borland International, Inc.
P. O. BOX 660001
1800 Green Hills Road
Scotts Valley, CA 95066-0001

(408) 438-8400 or (800) 543-7543

C_talk (PC)
CNS, Inc.
Software Products Dept.
7090 Shady Oak Road
Eden Prairie, MN 55344
(612) 944-0170

C86PLUS (PC)
Computer Innovations
980 Shrewsbury Ave.
Tinton Falls, NJ 07724
(201) 542-5920 or (800) 922-0169

MacC (Macintosh)
Consulair
P. O. Box 2192
Ketchum, ID 83340
(208) 726-5846

Eco-C88 (PC) and Eco-C (Macintosh and Z80 CP/M)
Ecosoft, Inc.
6413 N. College Ave.
Indianapolis, IN 46220
(317) 255-6476

C-51 (PC-to-8051 cross compiler)
Franklin Software, Inc.
888 Saratoga Ave., S-2
San Jose, CA 95129
(408) 296-8051

C-terp (PC)
Gimpel Software
3207 Hogarth Lane
Collegeville, PA 19426
(215) 584-4261

C and C++ Optimizing Compilers (PC and UNIX)
Green Hills Software
510 Castillo Street
Santa Barbara, CA 93101
(805) 965-6044

Guidelines C++ (PC)
Guidelines Software, Inc.
18 Evergreen Dr.
P. O. Box 749
Orinda, CA 94563
(415) 254-9183

C Compiler (PC)
IBM Corp.
Old Orchard Rd.
Armonk, NY 10504
(914) 765-1900

Lattice C (Amiga, Atari, PC, NEC 78310/2, 68000, Z80)
Lattice, Inc.
2500 S. Highland Ave.
Lombard, IL 60148
(312) 916-1600

LPI-C (Intel 80386 and Motorola 680X0)
Liant Software
959 Concord St.
Framingham, MA 01701-4613
(508) 626-0006

NEW C (UNIX, XENIX, MS-DOS)
Liant Software
959 Concord St.
Framingham, MA 01701-4613
(508) 626-0006

Run/C and Advantage C++ (PC)
Lifeboat Associates

55 South Broadway
Tarrytown, NY 10591
(914) 332-1875 or (800) 847-7078

Aztec C (Amiga, Apple, Atari, PC, Macintosh)
Manx Software Systems
P. O. Box 55
Shrewsbury, NJ 07701
(201) 542-2121 or (800) 221-0400

Let’s C (PC)
Mark Williams Company
1430 West Wrightwood
Chicago, IL 60614
(312) 472-6659 or (800) 692-1700

High C (PC) and High C386 (Intel 80386)
Metaware Inc.
903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060-4429
(408) 429-6382

QuickC (PC)
Microsoft Corp.
One Microsoft Way
Redmond, WA 98052
(206) 882-8080

C Optimizing Compiler (PC)
Microsoft Corp.
One Microsoft Way
Redmond, WA 98052
(206) 882-8080

NDP C-386 (PC and Intel 80386: DOS and UNIX)
MicroWay, Inc.
Research Park
P. O. Box 79
Kingston, MA 02364

(508) 746-7341

Power C (PC)
Mix Software Inc.
1132 Commerce Dr.
Richardson, TX 75081
(214) 783-6001

C Network Compiler (Intel 80X86)
Novell Development Products
Novell, Inc.
P. O. Box 9802
Austin, TX 78766

C Cross Compiler (for PC on Apollo, VAX, Sun)
Oasys
230 Second Ave.
P. O. Box 8990
Waltham, MA 02254-8990
(617) 890-7889

C++ Compiler (PC, Intel 386, SUN-3, VAX)
Oregon Software, Inc.
6915 S. W. Macadam, S-200
Portland, OR 97219-2397
(503) 245-2202

Par.C (Inmos Transputer)
Parsec Developments
Witte Singel 66
P. O. Box 782
2300 AT Leiden
The Netherlands
(31) 71 142142

QC88 (PC)
Quality Computer Systems
The Austin Code Works
11100 Leafwood Lane

Austin, TX 78750-3409
(512) 258-0785

Instant C (PC)
Rational Systems
P. O. Box 480
Natick, MA 01760
(508) 653-6194

Sierra C (68000)
Sierra Systems
6728 Evergree Ave.
Oakland, CA 94611
(415) 339-8200

SC-C (PC)
Silicon Composers, Inc.
210 California Ave., Suite K
Palo Alto, CA 94036
(415) 322-8763

SVS C (UNIX)
Silicon Valley Software
1710 South Amphlett Blvd., S-100
San Mateo, CA 94402
(415) 572-8800

CrossCode C (PC or UNIX for HD64180, 68000, Z80)
Software Development Systems, Inc.
3110 Woodcreek Dr.
Downers Grove, IL 60515
(312) 971-8170 or (800) 448-7733

Hyper-C (Macintosh)
Spectra Micro Development
P. O. Box 41795
Tucson, AZ 85717
(602) 884-7402

Objective-C (PC)
Stepstone Corp.
75 Glen Road
Sandy Hook, CT 06482
(203) 426-1875 or (800) 289-6253

C Compiler
Supersoft, Inc.
510 West Park Ave.
P. O. Box 1628
Champaign, IL 61820
(217) 359-2112 and (800) 678-3600

THINKS’s LightspeedC (Macintosh)
Symantec Corporation
10201 Torre Avenue
Cupertino, CA 95014
(408) 253-9600

THEOS C (THEOS on various microcomputers)
THEOS Software Corp.
1777 Botelho Dr., S-360
Walnut Creek, CA 94596-5022
(415) 935-1118

WATCOM C6.5 and WATCOM Express C (PC)
WATCOM Products Inc.
415 Phillip Street
Waterloo, Ontario
Canada, N2L 3X2
(519) 886-3700 or (800) 265-4555

C Native Compilers (Atari, DEC PDP-11 & VAX, IBM 370 & PC)
Whitesmiths, Ltd.
59 Power Road
Westford, MA 01886
(617) 692-7800 or (800) 225-1030

C Compiler

Wintek Corp.
1801 South St.
Lafayette, IN 47904
(317) 742-0428 or (800) 742-6809

Zortech C++ (PC)
Zortech Inc.
361 Massachusetts Ave., S-303
Arlington, MA 02174
(617) 646-6703 or (800) 848-8408

{ewc oshtools.dll, OlsonSoftEWButton, " Next Appendix ":next()}

Appendix B: Fortran Compilers

Recent advances in microcomputer technology has resulted in
systems with sufficient power to handle fairly sophisticated science and
engineering problems. To take advantage of such hardware platforms, this
appendix is a list of nine FORTRAN compilers currently available in the
market at the time of this update (December, 1994). The list gives the
product name, the microcomputer(s) on which it will run, and the vendor’s
name, address, and telephone number.

This list of FORTRAN compilers is provided as a convenience to the
readers of this book; the presence of a particular product or vendor does
not constitute an endorsement. Similarly, the absence of a particular
product or vendor does not imply that any evaluation kept it off the list.

Absoft Fortran 77 and MacFortran II (Amiga, PC, and MacIntosh)
Absoft
2781 Bond Street.
Rochester Hills, MI 48309
(313) 853-0050

Fortran Optimizing Compiler (PC and UNIX)
Green Hills Software
510 Castillo Street
Santa Barbara, CA 93101
(805) 965-6044

F77L, F77L-EM, Personal FORTRAN 77 (PC)
Lahey Computer Systems, Inc.
865 Tahoe Blvd.
P. O. Box 6091
Incline Village, NV 89450
(702) 831-2500

FORTRAN (Macintosh)
Language Systems Corp.
441 Carlisle Drive
Herndon, VA 22070
(703) 478-0181

LPI-FORTRAN (PC and UNIX on Intel 80386 and higher)
Liant Software
959 Concord St.
Framingham, MA 01701
(508) 626-0006

FORTRAN Optimizing Compiler
Microsoft Corp.
One Microsoft Way
Redmond, WA 98052
(206) 882-8080

NDP Fortran-386 (MS-DOS or UNIX on Intel 80386)
Microway
Research Park
P. O. Box 79
Kingston, MA 02364
(508) 746-7341

SVS Fortran 77 (UNIX)
Silicon Valley Software
1710 South Amphlett Blvd., S-100
San Mateo, CA 94402
(415) 572-8800

FTN77+ (QNXos)
Southdale Integrated Systems, Inc.
3410 South Service Road
Burlington, Ontario
Canada L7N 3P2
(416) 639-1990

{ewc oshtools.dll, OlsonSoftEWButton, " Next Appendix ":next()}

Appendix C: Fortran to C Translation Tools

One decision made in the course of developing a new application is
the selection of the programming language. Modern programming
languages each have their own strengths and weaknesses. Often, the
nature of the problem itself allows the analyst to pick a suitable language.
However, in many cases, company policy regarding a “standard”
programming language and/or an individual programmer’s skill in a
particular language greatly contribute to the final decision.

When existing applications are evaluated for modification and
maintenance, the programming language decision can be revisited. An
extremely large body of existing FORTRAN code exists, distributed across
a wide variety of hardware platforms and running under diverse operating
systems. Some of these existing applications would benefit from being
recast into the C programming language. Maintenance could be improved
because an accomplished C programmer might be located more easily
than an accomplished FORTRAN programmer. An application could take
advantage of hardware platforms and/or operating systems that have
embedded support for C but perhaps less effective support for FORTRAN.
In addition, an application could interact more efficiently with other
applications written in C or with software utilities – data management,
screen handling, etc. – that have a rich C interface and perhaps a less
flexible FORTRAN interface.

If an existing FORTRAN application is a candidate for conversion to
C, it might make some sense to have the bulk of the “translation” done
automatically. Such tools exist, and this appendix is a list of several
FORTRAN-to-C converters available in the market at the time of this
update (December, 1994). The list gives the product name, and the
vendor’s name, address, and telephone number.

This list of six FORTRAN-to-C converters is provided as a
convenience to the readers of this book; the presence of a particular
product or vendor does not constitute an endorsement. Similarly, the
absence of a particular product or vendor does not imply that any
evaluation kept it off the list.

FOR_C and FOR_C++
Cobalt Blue, Inc.
875 Old Roswell Road, Suite D-400

Roswell, GA 30076
(404) 518-1116

f2c
Available via anonymous ftp from the
/netlib/f2c directory at site netlib.att.com

ATS
G2i
1550 Bryant Street, Suite 634
San Francisco, CA 94103
(415) 431-4115

Fortran-C
Green Hills Software, Inc.
510 Castillo Street
Santa Barbara, CA 93101
(805) 965-6044

ASSISTANT III
MicroTools
P.O. Box 2745
Santa Clara, CA 95055
(408) 296-4378

PROMULA.FORTRAN
PROMULA Development Corp.
3620 North High Street, S-301
Columbus, OH 43214
(614) 263-5512

{ewc oshtools.dll, OlsonSoftEWButton, " Next Appendix ":next()}

Appendix D: Standard References

Each year, quite a few books are published covering various aspect
of the C programming language. A large proportion of these publications
cover generic aspects of C (i.e., advanced topics, data structures, ISAM file
management, etc.) and the remainder are targeted towards specific
markets (especially graphics). Since this book targets a base level
understanding of the language, any of the multitude of C texts are
recommended to extend the reader’s knowledge of the diverse applications
of the C programming language.

However, there are certain fundamental publications that are very
important in any appreciation of the C programming language. First, the
classic definition of the language is

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. 228 pages. Englewood Cliffs: Prentice-Hall, Inc., 1978.

and updated a decade later to recognize the emerging ANSI standard in

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. 272 pages. Englewood Cliffs: Prentice-Hall, Inc., 1988.

The “final” word on the ANSI standard is

X3.159 Programming Language C

published on December 7, 1988, and authorized by

American National Standards Institute, Inc. (ANSI)
1430 Broadway
New York, New York 10018
 (212) 642-4900

Everyday aspect of standards implementation in the information
processing field is handled for ANSI by

X3 Standards Secretariat
Computer and Business Equipment Manufacturers
Association (CBEMA)
311 First Street N.W., S-500

Washington, DC 20001-2178
 (202) 626-5738

and publications resulting from such efforts are available for purchase
through the following clearing house

Global Engineering Documents, Inc.
3130 South Harbor Road
Santa Ana, CA 92704
 (714) 979-8135

Commercially, the following book is a useful companion to the ANSI
standards as it describes, in alphabetical fashion, each term and function of
ANSI C

Mark Williams Company. ANSI C: A Lexical Guide. 565 pages.
Englewood Cliffs: Prentice-Hall, Inc., 1988.

Any serious examination of ANSI C could derive substantial benefit
from ongoing access to the Kernighan and Ritchie, ANSI standard, and
Mark Williams Company texts.

Fortran programmers may develop a fuller appreciation for the
“standard” edition of that programming language by perusing the “Fortran
77” ANSI standard

X3.9-1978 Programming Language Fortran

published on April 3, 1978, and the new Fortran 90 specification

X3.198-199x Programming Language Fortran 90

published in September, 1992. In both cases, the responsibility for these
two Fortran standards rests with the American National Standards Institute
through its efforts managed by CBEMA and with publications available from
Global Engineering.

For applications and language detail, the following sample of books
gives an overview of how C is used in certain Fortran-rich areas and/or how
particular aspects of C can be turned to a programmers advantage:

Adamson, Thomas A., J. L. Antonakos, and K. Mansfield. Structured C
for Engineering and Technology. Englewood Cliffs, NJ: Prentice-Hall,

Inc., 1995.

Baker, Louis. C Tools for Scientists and Engineers. 324 pages. New
York: McGraw-Hill Book Company, 1989.

Baker, Louis. More C Tools for Scientists and Engineers. 308 pages.
New York: McGraw-Hill Book Company, 1991.

Baker, Louis. C Mathematical Function Handbook. 757 pages. New
York: McGraw-Hill Book Company, 1992.

Bramer, Brian and Susan Bramer. C for Engineers. 374 pages.
London: Edward Arnold, 1993.

Bronson, Gary J. C for Engineers and Scientists: An Introduction to
Programming with ANSI C. 645 Pages. Minneapolis, MN: West
Publishing, Co., 1993.

Etter, Delores M. Engineering Problem Solving with ANSI C.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1995

Glassy, Robert. Numerical Computation Using C. 283 pages. Boston,
MA: Academic Press, 1993.

Hanly, Jeri R., E. B. Koffman, and J. C. Horvath. C Program Design for
Engineers. Reading, MA: Addison-Wesley, 1994.

Holsberg, Peter J. C for Electronics and Computer Engineering
Technology. 383 pages. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1990.

Hopgood, Frank R. A. A Primer for Phigs: C Programmer’s Edition.
298 pages. Chichester, England: John Wiley & Sons, Inc., 1992.

Kassab, Vincent. Technical C Programming. 386 pages. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1989.

Kempf, James. Numerical Software Tools in C. 261 pages. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1987.

Korsh, James F. and Leonard J. Garett. Data Structures, Algorithms,
and Program Style. 590 pages. Boston, MA: PWS-Kent Publishing
Company, 1988.

Lerman, Steven R. Problem Solving and Computation for Scientists
and Engineers: An Introduction Using C. 521 pages. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1993.

Millspaugh, Anita C. Business Programming in C: For DOS-Based
Systems. 482 pages. Fort Worth, TX: Dryden Press, 1993.

Nakamura, Shoichiro. Applied Numerical Methods in C. 604 pages.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1993.

O’Rourke, Joseph. Computational Geometry in C. 346 pages.
Cambridge, England: Cambridge University Press, 1994.

Press, William H. et. al. Numerical Recipes: The Art of Scientific
Computing. 818 pages. Cambridge, England: Cambridge University
Press, 1986. (All programs are in Fortran: C versions presented in 1988
edition.)

Press, William H. et. al. Numerical Recipes: The Art of Scientific
Computing. 735 pages. Cambridge, England: Cambridge University
Press, 1988. (All programs are in C: Fortran versions presented in 1986
edition.)

Sengupta, Saumyendra and Paul Edwards. Data Structures in ANSI C.
630 pages. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.

Sterns, Samual D. Signal Processing Algorithms Using Fortran and C.
331 pages. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1993.

Tenenbaum, Aaron M. et. al. Data Structures Using C. 662 pages.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

Traister, Robert J. Mastering C Pointers: Tools for Programmer
Power. 163 pages. San Diego, CA: Academic Press, 1993.

Wortman, Leon and Thomas O. Sidebottom. C Programming With
Business Applications. 231 pages. Blue Ridge Summit, PA: Tab
Books, 1987.

The preceding texts are a sample from the variety of C-based
publications. They were selected to demonstrate the scope of the C
language in the Fortran provenance and/or because they focused on

specific areas of complexity in the C programming language.
Nearly 650 books are in print explaining a wide range of issues

related to C. Each of these texts will extend the reader’s knowledge of the
C programming language. Hopefully, this book augments the skill of the
experienced Fortran programmer to a level sufficient to benefit from the
explosion of C programming language texts.

{ewc oshtools.dll, OlsonSoftEWButton, " Thank You! ":next()}

Thank You

OmniMedia thanks you for reading this title. For more information or
advice about this electronic book and other OmniMedia offerings, contact

OmniMedia
1312 Carlton Place
Livermore, CA 94550
 (510) 294-8153; fax (510) 447-1771 (not always online)
Internet: omnimdia@netcom.com

OmniMedia’s anonymous ftp archive is located at
ftp.netcom.com /pub/Om/OmniMedia/books

{ewc oshtools.dll, OlsonSoftEWJumpButton, " Table of Contents
":toc:MAIN}

{ewc oshtools.dll, OlsonSoftEWButton, " Exit ":exit()}

The Selected Chapter is SoftLocked

You can’t read this chapter (nor Chapters 5 to 7, Appendices A to C) until
you register a password by a simple, toll-free telephone call (U.S. and Canada).
Once you register a password, all locked chapters in this electronic book will be
unlocked and this “nag” window will not reappear unless the password becomes
invalid (fully explained in the password registration window).

If you decide to register a password, be sure to write down or print out the
password, the product number, and the SoftLockID (see the registration window),
and keep this information in a safe place. If you have any problems with the
SoftLock portion of this electronic book, call SoftLock Technical Assistance at
(610) 993-9900.

Click HERE (once) to go to the password registration window (be patient as it
may take several seconds for that window to appear)
Click HERE to return to where you were in the text without registering

Thank You!

Thank you for registering From Fortran to C. We’re sure you’ll enjoy it.
If you have any problems with the SoftLock password (for example, the

password becomes invalid or you accidentally delete the file softlock.ini from
your Windows directory without having written down the password), contact
SoftLock at (610) 993-9900. Be sure to have ready all the information you
provided SoftLock when you first registered.

For any other technical problems with this electronic book, please contact
OmniMedia. For questions or comments about the text, contact the author
directly. (Contact information for both OmniMedia and the author can be
obtained elsewhere in this electronic book.)

Click HERE to return to where you were in the text before registering

Registration Program Error

An error has occurred while attempting to register this electronic book.
Please make sure the files slpw-win.exe (the SoftLock Registration

Program), slpwinfo.seq (a text file required by slpw-win.exe), softlock.dll (the
SoftLock Dynamic Link Library) and vbrun300.dll (a Visual Basic 3.0 Dynamic
Link Library) are in the same directory as this electronic book file (note: the *.dll
files could also be placed into the windows\ or windows\system directory.)

If any of these files are missing, contact OmniMedia immediately (contact
information is found elsewhere in this electronic book.) If none of the files are
missing, you may contact either OmniMedia, or SoftLock Customer Service at
610-993-9900 during normal business hours (Eastern Time) or e-mail to
customerserv@softlock.com.

Click HERE to return to where you were in the text before attempting to register

Full Text Search

A full text (i.e., a word/string) search utility is provided for your
convenience. In addition to ordinary word searching, enhanced features
include, among others, a Boolean search capability and one type of a wild-
card character specification capability. For help and advice using this
utility, click on the “Hints” button found in the Full Text Search window.

To return to the topic you were reading before invoking Full Text
Search, repeatedly click on the “Back” button above as many times as
necessary, or locate the topic via the “History” button.

Click HERE to perform a Full Text Search.

Click HERE to return to the Table of Contents.

